Suppr超能文献

使用碘和镧系元素纳米颗粒对比剂进行肿瘤血管功能成像:能量积分和光子计数探测器的光谱 micro-CT 比较。

Functional imaging of tumor vasculature using iodine and gadolinium-based nanoparticle contrast agents: a comparison of spectral micro-CT using energy integrating and photon counting detectors.

机构信息

Department of Radiology, Center for In Vivo Microscopy, Duke University, Durham, NC 27710, United States of America.

http://civm.duhs.duke.edu/.

出版信息

Phys Med Biol. 2019 Mar 12;64(6):065007. doi: 10.1088/1361-6560/ab03e2.

Abstract

Advances in computed tomography (CT) hardware have propelled the development of novel CT contrast agents. In particular, the spectral capabilities of x-ray CT can facilitate simultaneous imaging of multiple contrast agents. This approach is particularly useful for functional imaging of solid tumors by simultaneous visualization of multiple targets or architectural features that govern cancer development and progression. Nanoparticles are a promising platform for contrast agent development. While several novel imaging moieties based on high atomic number elements are being explored, iodine (I) and gadolinium (Gd) are particularly attractive because of their existing approval for clinical use. In this work, we investigate the in vivo discrimination of I and Gd nanoparticle contrast agents using both dual energy micro-CT with energy integrating detectors (DE-EID) and photon counting detector (PCD)-based spectral micro-CT. Simulations and phantom experiments were performed using varying concentrations of I and Gd to determine the imaging performance with optimized acquisition parameters. Quantitative spectral micro-CT imaging using liposomal-iodine (Lip-I) and liposomal-Gd (Lip-Gd) nanoparticle contrast agents was performed in sarcoma bearing mice for anatomical and functional imaging of tumor vasculature. Iterative reconstruction provided high sensitivity to detect and discriminate relatively low I and Gd concentrations. According to the Rose criterion applied to the experimental results, the detectability limits for I and Gd were approximately 2.5 mg ml for both DE-EID CT and PCD micro-CT, even if the radiation dose was approximately 3.8 times lower with PCD micro-CT. The material concentration maps confirmed expected biodistributions of contrast agents in the blood, liver, spleen and kidneys. The PCD provided lower background signal and better simultaneous visualization of tumor vasculature and intratumoral distribution patterns of nanoparticle contrast agent compared to DE-EID decompositions. Preclinical spectral CT systems such as this could be useful for functional characterization of solid tumors, simultaneous quantitative imaging of multiple targets and for identifying clinically-relevant applications that benefit from the use of spectral imaging. Additionally, it could aid in the development nanoparticles that show promise in the developing field of cancer theranostics (therapy and diagnostics) by measuring vascular tumor biomarkers such as fractional blood volume and the delivery of liposomal chemotherapeutics.

摘要

计算机断层扫描(CT)硬件的进步推动了新型 CT 对比剂的发展。特别是,X 射线 CT 的光谱能力可以促进多种对比剂的同时成像。这种方法对于通过同时可视化多个目标或控制癌症发展和进展的结构特征来对实体瘤进行功能成像特别有用。纳米颗粒是一种很有前途的对比剂开发平台。虽然正在探索基于高原子序数元素的几种新型成像部分,但碘(I)和钆(Gd)由于其已获准用于临床使用而特别有吸引力。在这项工作中,我们使用双能微 CT 与能量积分探测器(DE-EID)和基于光子计数探测器(PCD)的光谱微 CT 来研究 I 和 Gd 纳米颗粒对比剂的体内鉴别。使用不同浓度的 I 和 Gd 进行模拟和体模实验,以确定具有优化采集参数的成像性能。使用脂质体碘(Lip-I)和脂质体钆(Lip-Gd)纳米颗粒对比剂对肉瘤荷瘤小鼠进行定量光谱微 CT 成像,以对肿瘤血管进行解剖和功能成像。迭代重建提供了高灵敏度,可检测和区分相对较低的 I 和 Gd 浓度。根据应用于实验结果的罗斯准则,对于 DE-EID CT 和 PCD 微 CT,I 和 Gd 的检测极限均约为 2.5mg ml,即使 PCD 微 CT 的辐射剂量约低 3.8 倍。材料浓度图证实了对比剂在血液、肝脏、脾脏和肾脏中的预期生物分布。与 DE-EID 分解相比,PCD 提供了更低的背景信号,并更好地同时可视化肿瘤血管和纳米颗粒对比剂的肿瘤内分布模式。这种临床前光谱 CT 系统可用于对实体瘤进行功能特征描述,对多个目标进行同时定量成像,并确定受益于光谱成像的临床相关应用。此外,它可以通过测量血管肿瘤生物标志物(如部分血容量和脂质体化疗药物的输送)来帮助开发在癌症治疗和诊断领域有前途的纳米颗粒。

相似文献

2
Dual source hybrid spectral micro-CT using an energy-integrating and a photon-counting detector.
Phys Med Biol. 2020 Oct 21;65(20):205012. doi: 10.1088/1361-6560/aba8b2.
3
Energy-integrating-detector multi-energy CT: Implementation and a phantom study.
Med Phys. 2021 Sep;48(9):4857-4871. doi: 10.1002/mp.14943. Epub 2021 Jul 29.
4
5
Hybrid spectral CT reconstruction.
PLoS One. 2017 Jul 6;12(7):e0180324. doi: 10.1371/journal.pone.0180324. eCollection 2017.
6
In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT.
Phys Med Biol. 2013 Mar 21;58(6):1683-704. doi: 10.1088/0031-9155/58/6/1683. Epub 2013 Feb 19.
7
Micro-CT imaging of multiple K-edge elements using GaAs and CdTe photon counting detectors.
Phys Med Biol. 2023 Apr 12;68(8). doi: 10.1088/1361-6560/acc77e.
8
Performance evaluation of single- and dual-contrast spectral imaging on a photon-counting-detector CT.
Med Phys. 2024 Nov;51(11):8034-8046. doi: 10.1002/mp.17367. Epub 2024 Sep 5.
9
Quarter-millimeter spectral coronary stent imaging with photon-counting CT: Initial experience.
J Cardiovasc Comput Tomogr. 2018 Nov-Dec;12(6):509-515. doi: 10.1016/j.jcct.2018.10.008. Epub 2018 Oct 15.
10
Advances in micro-CT imaging of small animals.
Phys Med. 2021 Aug;88:175-192. doi: 10.1016/j.ejmp.2021.07.005. Epub 2021 Jul 17.

引用本文的文献

1
K-Edge Imaging Using a Clinical Dual-Source Photon-Counting CT System.
medRxiv. 2025 Aug 24:2025.08.21.25333798. doi: 10.1101/2025.08.21.25333798.
2
Hypersensitivity reactions to iodinated contrast media: potential mechanisms and clinical management.
Front Med (Lausanne). 2025 May 7;12:1582072. doi: 10.3389/fmed.2025.1582072. eCollection 2025.
4
Assessing the cardioprotective effects of exercise in APOE mouse models using deep learning and photon-counting micro-CT.
PLoS One. 2025 Apr 10;20(4):e0320892. doi: 10.1371/journal.pone.0320892. eCollection 2025.
5
Nanoparticle Contrast Agents for Photon-Counting Computed Tomography: Recent Developments and Future Opportunities.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70004. doi: 10.1002/wnan.70004.
7
High-resolution hybrid micro-CT imaging pipeline for mouse brain region segmentation and volumetric morphometry.
PLoS One. 2024 May 23;19(5):e0303288. doi: 10.1371/journal.pone.0303288. eCollection 2024.
8
Contrast-enhanced photon-counting micro-CT of tumor xenograft models.
Phys Med Biol. 2024 Jul 19;69(15):155011. doi: 10.1088/1361-6560/ad4447.
9
Edge-illumination spectral phase-contrast tomography.
Phys Med Biol. 2024 Apr 3;69(7):075027. doi: 10.1088/1361-6560/ad3328.
10
Accurate Reconstruction of Multiple Basis Images Directly From Dual Energy CT Data.
IEEE Trans Biomed Eng. 2024 Jul;71(7):2058-2069. doi: 10.1109/TBME.2024.3361382. Epub 2024 Jun 19.

本文引用的文献

1
Dual-Energy CT Imaging of Tumor Liposome Delivery After Gold Nanoparticle-Augmented Radiation Therapy.
Theranostics. 2018 Feb 12;8(7):1782-1797. doi: 10.7150/thno.22621. eCollection 2018.
2
Feasibility of Dose-reduced Chest CT with Photon-counting Detectors: Initial Results in Humans.
Radiology. 2017 Dec;285(3):980-989. doi: 10.1148/radiol.2017162587. Epub 2017 Jul 28.
3
Hybrid spectral CT reconstruction.
PLoS One. 2017 Jul 6;12(7):e0180324. doi: 10.1371/journal.pone.0180324. eCollection 2017.
4
Spectral Photon-counting CT: Initial Experience with Dual-Contrast Agent K-Edge Colonography.
Radiology. 2017 Jun;283(3):723-728. doi: 10.1148/radiol.2016160890. Epub 2016 Dec 2.
5
Estimation of signal and noise for a whole-body photon counting research CT system.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9783. doi: 10.1117/12.2216637. Epub 2016 Mar 22.
6
Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer.
PLoS One. 2016 Mar 31;11(3):e0152718. doi: 10.1371/journal.pone.0152718. eCollection 2016.
8
In vivo small animal micro-CT using nanoparticle contrast agents.
Front Pharmacol. 2015 Nov 4;6:256. doi: 10.3389/fphar.2015.00256. eCollection 2015.
10
Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent.
Contrast Media Mol Imaging. 2014 Mar-Apr;9(2):161-8. doi: 10.1002/cmmi.1557.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验