Suppr超能文献

基于光子计数探测器 CT 的单对比和双对比能谱成像性能评估。

Performance evaluation of single- and dual-contrast spectral imaging on a photon-counting-detector CT.

机构信息

Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Med Phys. 2024 Nov;51(11):8034-8046. doi: 10.1002/mp.17367. Epub 2024 Sep 5.

Abstract

BACKGROUND

The first commercially available photon-counting-detector CT (PCD-CT) has been introduced for clinical use. However, its spectral performance on single- and dual-contrast imaging tasks has not been comprehensively assessed.

PURPOSE

To evaluate the spectral imaging performance of a clinical PCD-CT system for single-contrast material [iodine (I) or gadolinium (Gd)] and dual-contrast materials (I and Gd) in comparison with a dual-source dual-energy CT (DS-DECT).

METHODS

Iodine (5, 10, and 15 mg/mL) and gadolinium (3.3, 6.6, and 9.9 mg/mL) samples, and their mixtures (I/Gd: 5/3.3 and 10/6.6 mg/mL) were prepared and placed in two torso-shaped water phantoms (lateral dimensions: 30 and 40 cm). These phantoms were scanned on a PCD-CT (NAEOTOM Alpha, Siemens) at 90, 120, and 140 kV. The same phantoms were scanned on a DS-DECT (SOMATOM Force, Siemens) with 70/Sn150, 80/Sn150, 90/Sn150, and 100/Sn150 kV. The radiation dose levels were matched [volume CT dose index (CTDIvol): 10 mGy for the 30 cm phantom and 20 mGy for the 40 cm phantom] across all tube voltage settings and between scanners. Two-material decomposition (I/water or Gd/water) was performed on iodine or gadolinium samples, and three-material decomposition (I/Gd/water) on both individual samples and mixtures. On each decomposed image, mean mass concentration (± standard deviation) was measured in circular region-of-interests placed on the contrast samples. Root-mean-square-error (RMSE) values of iodine and gadolinium concentrations were reported based on the measurements across all contrast samples and repeated on 10 consecutive slices.

RESULTS

For all material decomposition tasks on the DS-DECT, the kV pairs with greater spectral separation (70/Sn150 kV and 80/Sn150 kV) yielded lower RMSE values than other DS-DECT and PCD-CT alternatives. Specifically, for the optimal 70/Sn150 kV, RMSE values were 1.2 ± 0.1 mg/mL (I) for I/water material decomposition, 1.0 ± 0.1 mg/mL (Gd) for Gd/water material decomposition, and 4.5 ± 0.2 mg/mL (I) and 3.7 ± 0.2 mg/mL (Gd), respectively, for I/Gd/water material decomposition. On the PCD-CT, the optimal tube voltages were 120 or 140 kV for I/water decomposition with RMSE values of 2.0 ± 0.1 mg/mL (I). For Gd/water decomposition on PCD-CT, the optimal tube voltage was 140 kV with gadolinium RMSE values of 1.5 ± 0.1 mg/mL (Gd), with the 90 kV setting on PCD-CT generating higher RMSE values for gadolinium concentration compared to all DS-DECT and PCD-CT alternatives. For three material decomposition, both imaging modalities demonstrated substantially higher RMSE values for iodine and gadolinium, with 90 kV being the optimal tube potential for Gd/I quantitation on PCD-CT [5.4 ± 0.3 mg/mL (I) and 3.9 ± 0.2 mg/mL (Gd)], and DS-DECT at 100/Sn150 kV having larger RMSE values for both materials compared to the alternatives for either modality.

CONCLUSION

Optimal tube voltage for material decomposition on the clinical PCD-CT is task-dependent but inferior to DS-DECT using 70/Sn150 kV or 80/Sn150 kV in two-material decomposition for single-contrast imaging (iodine/water or gadolinium/water). Three material decomposition (iodine/gadolinium/water) in dual-contrast imaging yields substantially higher RMSE for both imaging platforms.

摘要

背景

首个商业化的光子计数探测器 CT(PCD-CT)已投入临床使用。然而,其在单对比和双对比成像任务中的光谱性能尚未得到全面评估。

目的

评估一款临床 PCD-CT 系统在单对比材料(碘[I]或钆[Gd])和双对比材料(I 和 Gd)的光谱成像性能,并与双源双能 CT(DS-DECT)进行比较。

方法

碘(5、10 和 15 mg/mL)和钆(3.3、6.6 和 9.9 mg/mL)样本,以及它们的混合物(I/Gd:5/3.3 和 10/6.6 mg/mL)被制备并放置在两个体模中(横向尺寸:30 和 40 cm)。这些体模在 PCD-CT(NAEOTOM Alpha,西门子)上以 90、120 和 140 kV 进行扫描。相同的体模在 DS-DECT(SOMATOM Force,西门子)上以 70/Sn150、80/Sn150、90/Sn150 和 100/Sn150 kV 进行扫描。所有管电压设置和扫描仪之间的辐射剂量水平均匹配(容积 CT 剂量指数[CTDIvol]:30 cm 体模为 10 mGy,40 cm 体模为 20 mGy)。对碘或钆样本进行双材料分解(I/水或 Gd/水),对单个样本和混合物进行三材料分解(I/Gd/水)。在每个分解图像上,在对比样本上放置的圆形感兴趣区域中测量平均质量浓度(±标准偏差)。基于所有对比样本的测量结果报告碘和钆浓度的均方根误差(RMSE)值,并在 10 个连续切片上重复。

结果

对于 DS-DECT 上的所有材料分解任务,具有更大光谱分离的千伏对(70/Sn150 kV 和 80/Sn150 kV)产生的 RMSE 值低于其他 DS-DECT 和 PCD-CT 替代品。具体来说,对于最佳的 70/Sn150 kV,碘的 I/water 材料分解的 RMSE 值为 1.2±0.1 mg/mL,Gd 的 Gd/water 材料分解的 RMSE 值为 1.0±0.1 mg/mL,碘和钆的 I/Gd/water 材料分解的 RMSE 值分别为 4.5±0.2 mg/mL 和 3.7±0.2 mg/mL。在 PCD-CT 上,碘的最佳管电压为 120 或 140 kV,RMSE 值为 2.0±0.1 mg/mL(I)。对于 PCD-CT 上的 Gd/water 分解,最佳管电压为 140 kV,钆的 RMSE 值为 1.5±0.1 mg/mL(Gd),而 PCD-CT 上的 90 kV 设置产生的钆浓度 RMSE 值高于所有 DS-DECT 和 PCD-CT 替代品。对于三材料分解,两种成像方式的碘和钆 RMSE 值都明显较高,90 kV 是 PCD-CT 上 Gd/I 定量的最佳管电位[5.4±0.3 mg/mL(I)和 3.9±0.2 mg/mL(Gd)],而 DS-DECT 在 100/Sn150 kV 下对于两种材料的 RMSE 值都大于任何一种模式的替代品。

结论

在临床 PCD-CT 上进行材料分解的最佳管电压取决于任务,但在单对比成像(碘/水或钆/水)的双材料分解中,其性能逊于使用 70/Sn150 kV 或 80/Sn150 kV 的 DS-DECT。双对比成像中的三材料分解(碘/钆/水)会使两种成像平台的 RMSE 值明显升高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验