Estep L K, Zala M, Anderson N P, Sackett K E, Flowers M, McDonald B A, Mundt C C
Department of Botany and Plant Pathology, Oregon State University, Corvallis, 97331 and Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, 06511.
Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zürich, CH-8092, Switzerland.
Plant Dis. 2013 Nov;97(11):1511. doi: 10.1094/PDIS-05-13-0486-PDN.
The G143A mutation in cytb (cytochrome b gene) is associated with high levels of resistance to quinone outside inhibitor (QoI or strobilurin) fungicides that disrupt electron transport during cellular respiration (1). The G143A mutation in Zymoseptoria tritici (synonyms: Mycosphaerella graminicola and Septoria tritici), the causal agent of septoria tritici blotch of wheat (Triticum aestivum), was first reported in Europe in 2001 (1). Although Z. tritici has a global distribution (3), G143A mutants of Z. tritici have not been reported outside of Europe. We used PCR-RFLP (4) to estimate the frequencies of G143A mutants in Z. tritici populations at two locations in the Willamette Valley of western Oregon: the Hyslop Crop Science Field Research Laboratory (Hyslop Farm, HF), Benton County (44°37'52.85″ N, 123°11'55.19″ W) and research plots planted in a commercial wheat field in Washington County (45°33'58.53″ N, 123°00'11.78″ W) (North Valley Farm, NVF). Isolates originated from flag leaf collections from two cultivars ('Bobtail' and 'Tubbs 06') made in April and June of 2012 from plants in a replicated fungicide-treatment experiment, with isolates collected from both sprayed and unsprayed plots. Sixteen of the 169 isolates (9.5%) from HF possessed the G143A mutation (7 of 132 isolates from plots not receiving a QoI fungicide and 9 of 37 isolates collected from plots receiving two applications of the QoI azoxystrobin). One hundred forty six of the 175 isolates (83.4%) from NVF were G143A mutants (101 of 129 isolates from plots receiving no QoI fungicide and 45 of 46 isolates from plots receiving two applications of azoxystrobin). Results of phenotypic assays of a subset of 10 isolates from each location (5 mutants, 5 wild types from each location; 20 isolates altogether) supported a high level of resistance to azoxystrobin only in the G143A mutants. All 10 G143A mutants developed colonies after 8 days of growth on YMA plates amended with SHAM (2) and 1 ppm or 10 ppm azoxystrobin, with nine and eight G143A mutant isolates developing colonies on plates amended with 1 ppm and 10 ppm azoxystrobin, respectively. None of the wild-type isolates developed colonies on plates amended with SHAM and 1 ppm azoxystrobin, nor on plates amended with SHAM and 10 ppm azoxystrobin. All 20 isolates developed colonies on YMA plates lacking azoxystrobin, and treatments produced identical results across three replicates. These results are consistent with findings of higher levels of azoxystrobin resistance in G143A mutants compared to wild types in European populations (1). Isolates from HF and NVF differ in their previous exposure to QoI fungicides. The majority of the wheat area at HF is planted to breeding plots that are not sprayed with fungicide. Plots at NVF were planted in a commercial wheat field in a county where most wheat fields were treated with two to three applications of strobilurins each year over the past 4 years. Future monitoring for G143A mutants of Z. tritici throughout its range in North America will be necessary to assess whether strobilurin resistance will spread via wind-dispersal of ascospores or emerge de novo in treated fields. In Europe, stobilurins were first applied to wheat in 1996. G143A mutants of Z. tritici emerged de novo several times (4) and were widespread by 2007. References: (1) B. A. Fraaje et al. Phytopathology 95:933, 2005. (2) J. A. LaMondia. Tob. Sci. 49:1, 2012. (3) E. S. Orton et al. Mol. Plant Pathol. 12:413, 2011. (4) S. F. F. Torriani et al. Pest Manag. Sci. 65:155, 2008.
细胞色素b基因(cytb)中的G143A突变与对醌外抑制剂(QoI或甲氧基丙烯酸酯类)杀菌剂的高水平抗性相关,这类杀菌剂会在细胞呼吸过程中破坏电子传递(1)。小麦壳针孢(同义词:小麦球腔菌和小麦叶枯病菌)是小麦叶枯病的病原菌,其G143A突变于2001年在欧洲首次报道(1)。尽管小麦壳针孢在全球分布广泛(3),但在欧洲以外地区尚未报道过其G143A突变体。我们使用PCR-RFLP(4)方法来估计俄勒冈州西部威拉米特谷两个地点的小麦壳针孢群体中G143A突变体的频率:位于本顿县的希斯洛普作物科学田间研究实验室(希斯洛普农场,HF)(北纬44°37'52.85″,西经123°11'55.19″),以及华盛顿县一块商业小麦田中的研究地块(北纬45°33'58.53″,西经123°00'11.78″)(北谷农场,NVF)。分离株来源于2012年4月和6月从一个重复杀菌剂处理实验中的两个品种(“Bobtail”和“Tubbs 06”)的旗叶采集样本,样本来自喷洒和未喷洒药剂的地块。来自HF的169个分离株中有16个(9.5%)具有G143A突变(未接受QoI杀菌剂处理的地块中的132个分离株中有7个,接受两次QoI嘧菌酯处理的地块中的37个分离株中有9个)。来自NVF的175个分离株中有146个(83.4%)是G143A突变体(未接受QoI杀菌剂处理的地块中的129个分离株中有101个,接受两次嘧菌酯处理的地块中的46个分离株中有45个)。对每个地点的10个分离株子集(每个地点5个突变体、5个野生型;共20个分离株)进行的表型分析结果表明,只有G143A突变体对嘧菌酯具有高水平抗性。所有10个G143A突变体在添加了SHAM(2)和1 ppm或10 ppm嘧菌酯的YMA平板上生长8天后都形成了菌落,分别有9个和8个G143A突变体分离株在添加1 ppm和10 ppm嘧菌酯的平板上形成了菌落。野生型分离株在添加SHAM和1 ppm嘧菌酯的平板上以及添加SHAM和10 ppm嘧菌酯的平板上均未形成菌落。所有20个分离株在不含嘧菌酯的YMA平板上都形成了菌落,并且在三个重复实验中处理结果相同。这些结果与欧洲群体中G143A突变体相比野生型对嘧菌酯具有更高抗性的研究结果一致(1)。来自HF和NVF的分离株在之前接触QoI杀菌剂的情况上有所不同。HF的大部分小麦种植区域是育种地块,未喷洒杀菌剂。NVF的地块位于一个商业小麦田所在的县,在过去4年里,该县大多数小麦田每年都接受两到三次甲氧基丙烯酸酯类药剂的处理。未来有必要在北美小麦壳针孢的整个分布范围内对G143A突变体进行监测,以评估甲氧基丙烯酸酯类抗性是否会通过子囊孢子的风力传播扩散,或者在处理过的田地中重新出现。在欧洲,甲氧基丙烯酸酯类药剂于1996年首次应用于小麦。小麦壳针孢的G143A突变体多次重新出现(4),到2007年已广泛传播。参考文献:(1)B. A. Fraaje等人,《植物病理学》95:933,2005年。(2)J. A. LaMondia,《烟草科学》49:1,2012年。(3)E. S. Orton等人,《分子植物病理学》12:413,2011年。(4)S. F. F. Torriani等人,《害虫管理科学》65:155,2008年。