Fernández-Ortuño D, Grabke A, Bryson P K, Beasley E D, Fall L A, Brannen P M, Schnabel G
School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634, and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científica (IHSM-UMA-CSIC), Dept. de Microbiología, Campus de Teatinos, 29071 Málaga, Spain.
School of Agricultural, Forest, and Environmental Sciences, Clemson University, Clemson, SC 29634.
Plant Dis. 2014 Jun;98(6):848. doi: 10.1094/PDIS-10-13-1020-PDN.
Botrytis cinerea Pers. is an important plant-pathogenic fungi responsible for gray mold on more than 230 plant species worldwide, including blackberry (Rubus). One of the main strategies to control the disease involves the application of different classes of fungicides. The phenylpyrrole fludioxonil is currently marketed in combination with the anilinopyrimidine cyprodinil as Switch 62.5WG (Syngenta Crop Protection Inc., Greensboro, NC) for gray mold control. In August 2013, blackberries affected with symptoms resembling gray mold were collected from a field located in Berrien County (Georgia), where Switch 62.5WG had been used extensively over the last 5 years. Three single-spore isolates, each from a different fruit, were obtained and identified as B. cinerea on the basis of morphology and confirmed by a 238-bp PCR amplification product obtained with primer set G3PDH-F1 (5'-GGACCCGAGCTAATTTATGTCACGT-3'), G3PDH-F2 (5'-GGGTGTCAACAACGAGACCTACACT-3'), and G3PDH-R (5'-ACCGGTGCTCGATGGGATGAT-3'). In vitro sensitivity to fludioxonil (Scholar SC, Syngenta) was determined on 1% malt extract agar (MEA) using a conidial germination assay as previously described (4). One isolate was moderately resistant due to growth on medium amended with the discriminatory dose of 0.1 μg/ml fludioxonil and residual growth at 10 μg/ml (4). To assess performance of fludioxonil in detached fruit assays, commercially grown strawberries (24 in total for each isolate and treatment) were rinsed with water, dried, and sprayed 4 h prior to inoculation with either water (control fruit) or 2.5 ml/liter of Scholar SC to runoff using a hand mister. Scholar SC was used because fludioxonil was the sole active ingredient in this product and strawberries were used because latent infections in fresh blackberry fruit interfered with inoculation experiments. This dose reflects the rate recommended for postharvest gray mold control according to the Scholar label. Fruit was stab-wounded with a sterile syringe and inoculated with a 30-μl droplet of conidia suspension (10 spores/ml) of the two sensitive or the resistant isolate. After inoculation, the fruit were kept at 22°C for 4 days. The sensitive isolates developed gray mold on non-treated (2.7 cm lesion diameter) but not on Scholar SC-treated fruit (0.0 cm lesion diameter). The resistant isolate developed gray mold disease on the water-treated control fruit (2.5 cm lesion diameter) and the fungicide-treated fruit (1.8 cm lesion diameter). EC values were determined in microtiter assays as described previously (3) using the concentrations of 0.01, 0.04, 0.12, 0.37, 1.1, 3.3, and 10 μg/ml fludioxonil. Values were 0.02 and 0.05 μg/ml for the two sensitive isolates and 3.15 μg/ml for the resistant isolate. All experiments were performed twice. This is the first report of fludioxonil resistance in B. cinerea from blackberry in Georgia. Prior to this study, resistance to fludioxonil in B. cinerea was reported in France, Germany, and only a few states in the United States including Maryland, South Carolina, Virginia, and Washington (1,2). The emergence of resistance to fludioxonil emphasizes the importance of resistance management strategies. References: (1) D. Fernández-Ortuño et al. Plant Dis. 97:848, 2013. (2) D. Fernández-Ortuño et al. Plant Dis. 98:692, 2013. (3) M. Kretschmer et al. PLOS Pathog. 5:e1000696, 2009. (4) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.
灰葡萄孢菌(Botrytis cinerea Pers.)是一种重要的植物病原真菌,可导致全球230多种植物发生灰霉病,其中包括黑莓(悬钩子属)。控制该病的主要策略之一是使用不同种类的杀菌剂。苯并吡咯类咯菌腈目前与苯胺基嘧啶类嘧菌环胺复配成62.5%咯菌·嘧菌环胺水分散粒剂(Switch 62.5WG,先正达作物保护公司,北卡罗来纳州格林斯伯勒)用于防治灰霉病。2013年8月,从佐治亚州贝里恩县一块田地中采集到有类似灰霉病症状的黑莓,在过去5年里该田地广泛使用了62.5%咯菌·嘧菌环胺水分散粒剂。从不同果实上获得了三个单孢分离株,根据形态学鉴定为灰葡萄孢菌,并通过使用引物对G3PDH-F1(5'-GGACCCGAGCTAATTTATGTCACGT-3')、G3PDH-F2(5'-GGGTGTCAACAACGAGACCTACACT-3')和G3PDH-R(5'-ACCGGTGCTCGATGGGATGAT-3')获得的238 bp PCR扩增产物进行了确认。按照先前描述的方法(4),在1%麦芽提取物琼脂(MEA)上使用分生孢子萌发试验测定了对咯菌腈(适乐时悬浮剂,先正达)的体外敏感性。一个分离株表现为中度抗性,因为其在添加了鉴别剂量0.1 μg/ml咯菌腈的培养基上生长,并且在10 μg/ml时仍有残留生长(4)。为了评估咯菌腈在离体果实试验中的效果,将商业种植的草莓(每个分离株和处理组各24个)用水冲洗、晾干,在接种前4小时用手动喷雾器分别喷水(对照果实)或2.5 ml/升适乐时悬浮剂直至径流。使用适乐时悬浮剂是因为咯菌腈是该产品的唯一活性成分,使用草莓是因为新鲜黑莓果实中的潜伏感染会干扰接种实验。该剂量反映了根据适乐时标签推荐的采后灰霉病防治剂量。用无菌注射器对果实进行刺伤接种,接种两个敏感或抗性分离株的30 μl分生孢子悬浮液(10个孢子/ml)。接种后,将果实置于22°C下4天。敏感分离株在未处理的果实上(病斑直径2.7 cm)发生了灰霉病,但在咯菌腈处理的果实上(病斑直径0.0 cm)未发生。抗性分离株在水处理的对照果实上(病斑直径2.5 cm)和杀菌剂处理的果实上(病斑直径1.8 cm)都发生了灰霉病。按照先前描述的方法(3),使用0.01、0.04、0.12、0.37、1.1、3.3和10 μg/ml的咯菌腈浓度在微量滴定试验中测定了EC值。两个敏感分离株的值分别为0.02和0.05 μg/ml,抗性分离株的值为3.15 μg/ml。所有实验均重复进行两次。这是佐治亚州黑莓上灰葡萄孢菌对咯菌腈产生抗性的首次报道。在本研究之前,法国、德国以及美国仅包括马里兰州、南卡罗来纳州、弗吉尼亚州和华盛顿州的少数几个州报道了灰葡萄孢菌对咯菌腈的抗性(1,2)。咯菌腈抗性的出现强调了抗性管理策略的重要性。参考文献:(1)D. Fernández-Ortuño等人,《植物病害》97:848,2013年。(2)D. Fernández-Ortuño等人,《植物病害》98:692,2013年。(3)M. Kretschmer等人,《公共科学图书馆·病原体》5:e1000696,2009年。(4)R. W. S. Weber和M. Hahn,《植物病害防治杂志》118:17,2011年。