Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA.
Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467, USA.
Chaos. 2019 Jan;29(1):013126. doi: 10.1063/1.5055758.
We study the dynamics of a generalized version of the famous Kuramoto-Sakaguchi coupled oscillator model. In the classic version of this system, all oscillators are governed by the same ordinary differential equation (ODE), which depends on the order parameter of the oscillator configuration. The order parameter is the arithmetic mean of the configuration of complex oscillator phases, multiplied by some constant complex coupling factor. In the generalized model, we consider that all oscillators are still governed by the same ODE, but the order parameter is allowed to be any complex linear combination of the complex oscillator phases, so the oscillators are no longer necessarily weighted identically in the order parameter. This asymmetric version of the K-S model exhibits a much richer variety of steady-state dynamical behavior than the classic symmetric version; in addition to stable synchronized states, the system may possess multiple stable (N-1,1) states, in which all but one of the oscillators are synchronized, as well as multiple families of neutrally stable states or closed orbits, in which no two oscillators are synchronized. We present an exhaustive description of the possible steady state dynamical behaviors; our classification depends on the complex coefficients that determine the order parameter. We use techniques from group theory and hyperbolic geometry to reduce the dynamic analysis to a 2D flow on the unit disc, which has geometric significance relative to the hyperbolic metric. The geometric-analytic techniques we develop can in turn be applied to study even more general versions of Kuramoto oscillator networks.
我们研究了著名的 Kuramoto-Sakaguchi 耦合振子模型的广义版本的动力学。在该系统的经典版本中,所有振子都由相同的常微分方程 (ODE) 控制,该方程取决于振子配置的序参数。序参数是振子相位配置的算术平均值,乘以某个常数复耦合因子。在广义模型中,我们假设所有振子仍然由相同的 ODE 控制,但序参数可以是复振子相位的任何复线性组合,因此振子在序参数中不一定被同等加权。与经典对称版本相比,这种不对称版本的 K-S 模型表现出更丰富的稳态动力学行为;除了稳定的同步状态外,系统还可能具有多个稳定的(N-1,1)状态,其中除一个振子外,所有振子都同步,以及多个中性稳定状态或封闭轨道族,其中没有两个振子同步。我们对可能的稳态动力学行为进行了详尽的描述;我们的分类取决于确定序参数的复系数。我们使用群论和双曲几何的技术将动态分析简化为单位圆上的二维流,这相对于双曲度量具有几何意义。我们开发的几何分析技术反过来也可以应用于研究更一般的 Kuramoto 振子网络版本。