Suppr超能文献

涵盖紫外到中红外波段的多光谱多维光谱仪。

Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared.

作者信息

Song Yin, Konar Arkaprabha, Sechrist Riley, Roy Ved Prakash, Duan Rong, Dziurgot Jared, Policht Veronica, Matutes Yassel Acosta, Kubarych Kevin J, Ogilvie Jennifer P

机构信息

Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA.

Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA.

出版信息

Rev Sci Instrum. 2019 Jan;90(1):013108. doi: 10.1063/1.5055244.

Abstract

Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.

摘要

多维光谱学是核磁共振的光学类似物,能够以超快的时间分辨率探测动力学过程。在光频领域,多维光谱学的技术挑战一直阻碍着其发展,直到最近,激光源和脉冲整形技术的进步消除了许多实施障碍。可见和红外(IR)波段的多维光谱学已经分别在我们对光合作用和液态水结构重排的理解方面取得了进展。超快光谱学的一个前沿领域是扩展并结合多维技术和频率范围,这些技术和范围在很大程度上一直局限于在不同的可见或红外波段运行。通过使用由单个振荡器注入种子光的两个独立放大器,可以直接覆盖广泛的时间尺度(飞秒到秒),所有这些时间尺度通常都与化学、物理和材料科学中最重要的能量转换和催化问题相关。复杂的凝聚相系统具有从紫外(UV)到红外的光学跃迁,并在飞秒到秒及更长的时间尺度上表现出与功能相关的动力学。我们描述了多光谱多维非线性光谱仪(MMDS)的发展,以实现对原子、分子和材料系统中从飞秒到秒、从紫外到红外波段的动力学过程的研究。MMDS采用脉冲整形方法,提供了一种易于使用的仪器,具有前所未有的光谱范围,能够实现独特的组合光谱学。我们在几个模型系统上展示了MMDS的多光谱能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验