Suppr超能文献

眼位误差对“开环”平滑追随启动的影响。

Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation.

机构信息

Werner Reichardt Centre for Integrative Neuroscience,

Hertie Institute for Clinical Brain Research, and.

出版信息

J Neurosci. 2019 Apr 3;39(14):2709-2721. doi: 10.1523/JNEUROSCI.2178-18.2019. Epub 2019 Feb 1.

Abstract

The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient. Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.

摘要

动眼系统将各种视觉信号整合到适当的运动计划中,但这种整合的时间尺度可能有很大差异。例如,为了跟踪移动的目标,平滑追踪眼球运动比眼跳运动更慢且持续时间更长,人们认为启动平滑追踪眼球运动涉及一个强制性的“开环”间隔,在运动开始后 100 毫秒内,新的视觉运动信号大概无法影响随后的运动计划。然而,这种观点与动眼系统外围具有优先获取短潜伏期视觉信号的观点相矛盾。在这里,我们表明,即使在开环间隔内,平滑追踪的启动也对视觉输入敏感。我们指示雄性恒河猴发起无眼跳的平滑追踪眼球运动,并在相对于运动启动的不同时间注入一个短暂的、瞬时的眼位误差信号。我们发现,在瞬态信号发生后仅约 50 毫秒,甚至在开环追踪启动期间,眼速和加速度都出现了强大的短潜伏期调制。关键的是,注入的位置误差信号的空间方向对平滑追踪的启动具有可预测的影响,正向误差增加眼加速度,而反向误差减小眼加速度。捕捉性眼跳的频率和幅度也在瞬态信号后约 50 毫秒时类似地发生改变,就像在注视时对微眼跳的影响一样明显。我们的结果表明,平滑追踪的启动对视觉信号非常敏感,并且在视觉瞬变后重新设置捕捉性眼跳的生成。平滑追踪眼球运动使我们能够跟踪移动的物体。平滑追踪启动的最初约 100 毫秒的特征是平滑的眼加速,并且绝大多数被描述为“开环”,即不能被新的视觉运动信号改变。我们发现,平滑追踪的所有阶段,包括所谓的开环间隔,都可以被视觉信号可靠地改变。我们向平滑追踪注入短暂的闪光,产生非常短暂、空间特定的位置误差信号,并观察到平滑眼运动的非常短潜伏期变化,以最小化这些误差。我们的结果突出了动眼系统对环境事件的反应灵活性,并表明视觉敏感性在动眼控制脑区中的普遍性具有功能作用。

相似文献

1
Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation.
J Neurosci. 2019 Apr 3;39(14):2709-2721. doi: 10.1523/JNEUROSCI.2178-18.2019. Epub 2019 Feb 1.
3
The initiation of smooth pursuit eye movements and saccades in normal subjects and in "express-saccade makers".
Exp Brain Res. 2002 Jun;144(3):373-84. doi: 10.1007/s00221-002-1059-z. Epub 2002 Apr 13.
5
Direct evidence for a position input to the smooth pursuit system.
J Neurophysiol. 2005 Jul;94(1):712-21. doi: 10.1152/jn.00093.2005. Epub 2005 Feb 23.
6
Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys.
J Neurophysiol. 1998 Apr;79(4):1918-30. doi: 10.1152/jn.1998.79.4.1918.
7
Predictive elements in ocular interception and tracking of a moving target by untrained cats.
Exp Brain Res. 2001 Jul;139(2):233-47. doi: 10.1007/s002210100759.
8
What triggers catch-up saccades during visual tracking?
J Neurophysiol. 2002 Mar;87(3):1646-50. doi: 10.1152/jn.00432.2001.
9
Apparent motion produces multiple deficits in visually guided smooth pursuit eye movements of monkeys.
J Neurophysiol. 2000 Jul;84(1):216-35. doi: 10.1152/jn.2000.84.1.216.
10
Processing of retinal and extraretinal signals for memory-guided saccades during smooth pursuit.
J Neurophysiol. 2005 Mar;93(3):1510-22. doi: 10.1152/jn.00543.2004. Epub 2004 Oct 13.

引用本文的文献

1
Two-Dimensional Perisaccadic Visual Mislocalization in Rhesus Macaque Monkeys.
eNeuro. 2025 Jun 6;12(6). doi: 10.1523/ENEURO.0547-24.2025. Print 2025 Jun.
4
Spatial localization during open-loop smooth pursuit.
Front Neurosci. 2023 Feb 2;17:1058340. doi: 10.3389/fnins.2023.1058340. eCollection 2023.
5
Faster Detection of "Darks" than "Brights" by Monkey Superior Colliculus Neurons.
J Neurosci. 2022 Dec 14;42(50):9356-9371. doi: 10.1523/JNEUROSCI.1489-22.2022. Epub 2022 Nov 1.
6
Fixation-related saccadic inhibition in free viewing in response to stimulus saliency.
Sci Rep. 2022 Apr 22;12(1):6619. doi: 10.1038/s41598-022-10605-1.
7
Under time pressure, the exogenous modulation of saccade plans is ubiquitous, intricate, and lawful.
Curr Opin Neurobiol. 2021 Oct;70:154-162. doi: 10.1016/j.conb.2021.10.012. Epub 2021 Nov 21.
8

本文引用的文献

1
Transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories.
J Neurophysiol. 2019 Feb 1;121(2):513-529. doi: 10.1152/jn.00437.2018. Epub 2018 Dec 12.
2
Spatial frequency sensitivity in macaque midbrain.
Nat Commun. 2018 Jul 20;9(1):2852. doi: 10.1038/s41467-018-05302-5.
3
Choosing a foveal goal recruits the saccadic system during smooth pursuit.
J Neurophysiol. 2018 Aug 1;120(2):489-496. doi: 10.1152/jn.00418.2017. Epub 2018 Apr 18.
4
Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades.
J Neurophysiol. 2018 May 1;119(5):1962-1980. doi: 10.1152/jn.00752.2017. Epub 2018 Feb 21.
5
Saccade Reorienting Is Facilitated by Pausing the Oculomotor Program.
J Cogn Neurosci. 2017 Dec;29(12):2068-2080. doi: 10.1162/jocn_a_01179. Epub 2017 Aug 18.
6
Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements.
Vision Res. 2017 Jul;136:57-69. doi: 10.1016/j.visres.2017.05.008. Epub 2017 Jun 28.
8
A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus.
J Neurophysiol. 2017 Apr 1;117(4):1657-1673. doi: 10.1152/jn.00911.2016. Epub 2017 Jan 18.
9
A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing.
Front Syst Neurosci. 2016 Mar 7;10:23. doi: 10.3389/fnsys.2016.00023. eCollection 2016.
10
Vision, Perception, and Attention through the Lens of Microsaccades: Mechanisms and Implications.
Front Syst Neurosci. 2015 Dec 2;9:167. doi: 10.3389/fnsys.2015.00167. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验