Secord Thomas W, Audi Milad C
University of St. Thomas, St. Paul, MN, 55105, USA.
Cardiovasc Eng Technol. 2019 Jun;10(2):380-393. doi: 10.1007/s13239-019-00402-9. Epub 2019 Feb 1.
Energy harvesting from cardiac motion is an attractive means to avoid the use of batteries in implantable sensors and pacemakers. A single implantable device would ideally integrate both sensing and self-powering functionality.
This work describes a novel electromagnetic system that achieves high sensitivity detection of the heart rate while simultaneously providing adaptive energy harvesting capability using a tunable resonance cantilever mechanism.
Our prototype design exhibits tunability of resonant frequency across the range of physiologic heart rates at a combination of lengths and angular orientations. Our initial prototype also produces between 3.0 [Formula: see text]W and 20.6 [Formula: see text]W of power at heart rates of 79-243 bpm, respectively.
The prototype device can harvest sufficient energy to sustain implantable cardiac devices such as a leadless pacemaker. The system in this paper has the potential to eliminate batteries in certain implantable cardiac devices and thereby improve overall patient monitoring and treatment.
从心脏运动中获取能量是避免在植入式传感器和起搏器中使用电池的一种有吸引力的方法。理想情况下,单个植入式设备应集成传感和自供电功能。
本文介绍了一种新型电磁系统,该系统在利用可调谐共振悬臂机构实现自适应能量收集能力的同时,还能对心率进行高灵敏度检测。
我们的原型设计在不同长度和角度取向的组合下,在生理心率范围内呈现出共振频率的可调性。我们的初始原型在心率为79 - 243次/分钟时,分别产生3.0 [公式:见原文]W至20.6 [公式:见原文]W的功率。
该原型设备能够收集足够的能量来维持诸如无导线起搏器等植入式心脏设备的运行。本文中的系统有潜力在某些植入式心脏设备中消除电池,从而改善对患者的整体监测和治疗。