Suppr超能文献

一种混合建模框架,用于估算道路附近环境中的污染物浓度和暴露情况。

A hybrid modeling framework to estimate pollutant concentrations and exposures in near road environments.

机构信息

Department of Chemical and Biomolecular Engineering, University of Connecticut 191 Auditorium Road, Unit 3222. Storrs, CT 06269-3222, United States of America.

出版信息

Sci Total Environ. 2019 May 1;663:144-153. doi: 10.1016/j.scitotenv.2019.01.218. Epub 2019 Jan 19.

Abstract

Traffic related air pollution is one of the major local sources of pollution challenging most urban populations. Current air quality modeling approaches can estimate the concentrations of air pollutants on either regional or local scales but cannot effectively estimate concentrations from the combination of regional and local sources at both local and regional scales simultaneously. This study describes a hybrid modeling framework, HYCAMR, combining a regional model, CAMx, and a local-scale dispersion model, R-LINE, to estimate concentrations of both primary and secondary species at high temporal (hourly) and spatial (40 m) resolution. HYCAMR utilizes all the chemical and physical processes available in CAMx and the Particulate Matter Source Apportionment Technology (PSAT) tool to estimate concentrations from both onroad and nonroad emission sources. HYCAMR employs R-LINE, to estimate the normalized dispersion of pollutant mass from onroad emission sources, from primary and secondary roads, at high resolution. Applying R-LINE for one day per month using average daily meteorology yields seasonally-resolved spatial dispersion profiles at low computational cost. Combining the R-LINE spatial dispersion profile with CAMx concentration estimates yields an estimate of the combined concentrations for a range of pollutants at high spatial and temporal resolution. In three major cities in Connecticut, HYCAMR shows strong temporal and seasonal variability in NOx, PM, and elemental carbon (EC) concentrations. This study evaluates HYCAMR year 2011 estimates of NO and PM against two sources: satellite-based estimates at coarse resolution and regression model estimates at census block group resolution. In this evaluation, HYCAMR demonstrates improved agreement with the land-use regression modeling and mixed agreement with satellite-based estimates when compared to the regional CAMx estimates.

摘要

交通相关的空气污染是大多数城市人口面临的主要本地污染源之一。当前的空气质量建模方法可以在区域或本地尺度上估计空气污染物的浓度,但不能有效地同时在本地和区域尺度上同时估计区域和本地源的组合浓度。本研究描述了一种混合建模框架 HYCAMR,该框架结合了一个区域模型 CAMx 和一个本地尺度扩散模型 R-LINE,以高时间(每小时)和空间(40 米)分辨率估计一次和二次物种的浓度。HYCAMR 利用 CAMx 中所有可用的化学和物理过程以及颗粒物源分配技术(PSAT)工具,从道路和非道路排放源估算浓度。HYCAMR 采用 R-LINE 估算主要和次要道路上来自道路排放源的污染物质量归一化扩散,分辨率高。每月使用一天的平均每日气象数据应用 R-LINE,可以以较低的计算成本获得季节性分辨的空间扩散分布。将 R-LINE 空间扩散分布与 CAMx 浓度估算相结合,可以在高时空分辨率下估算一系列污染物的组合浓度。在康涅狄格州的三个主要城市,HYCAMR 显示出 NOx、PM 和元素碳(EC)浓度的强烈时间和季节性变化。本研究评估了 HYCAMR 2011 年对 NO 和 PM 的估算值,有两个来源:基于卫星的粗分辨率估算值和基于人口普查区块组的回归模型估算值。在这种评估中,与区域 CAMx 估算值相比,HYCAMR 与土地利用回归模型的一致性更好,与卫星估算值的一致性混合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验