Suppr超能文献

地理编码错误、空间不确定性及其对暴露评估和环境流行病学的影响。

Geocoding Error, Spatial Uncertainty, and Implications for Exposure Assessment and Environmental Epidemiology.

机构信息

University Center for Social and Urban Research, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, PA 19104, USA.

出版信息

Int J Environ Res Public Health. 2020 Aug 12;17(16):5845. doi: 10.3390/ijerph17165845.

Abstract

Although environmental epidemiology studies often rely on geocoding procedures in the process of assigning spatial exposure estimates, geocoding methods are not commonly reported, nor are consequent errors in exposure assignment explored. Geocoding methods differ in accuracy, however, and, given the increasing refinement of available exposure models for air pollution and other exposures, geocoding error may account for an increasingly larger proportion of exposure misclassification. We used residential addresses from a reasonably large, dense dataset of asthma emergency department visits from all New York City hospitals ( = 21,183; 26.9 addresses/km), and geocoded each using three methods (Address Point, Street Segment, Parcel Centroid). We compared missingness and spatial patterning therein, quantified distance and directional errors, and quantified impacts on pollution exposure estimates and assignment to Census areas for sociodemographic characterization. Parcel Centroids had the highest overall missingness rate (38.1%, Address Point = 9.6%, Street Segment = 6.1%), and spatial clustering in missingness was significant for all methods, though its spatial patterns differed. Street Segment geocodes had the largest mean distance error (µ = 29.2 (SD = 26.2) m; vs. µ = 15.9 (SD = 17.7) m for Parcel Centroids), and the strongest spatial patterns therein. We found substantial over- and under-estimation of pollution exposures, with greater error for higher pollutant concentrations, but minimal impact on Census area assignment. Finally, we developed surfaces of spatial patterns in errors in order to identify locations in the study area where exposures may be over-/under-estimated. Our observations provide insights towards refining geocoding methods for epidemiology, and suggest methods for quantifying and interpreting geocoding error with respect to exposure misclassification, towards understanding potential impacts on health effect estimates.

摘要

尽管环境流行病学研究通常在分配空间暴露估计值的过程中依赖地理编码程序,但地理编码方法通常未被报告,也未探讨暴露分配中的后续错误。然而,地理编码方法的准确性存在差异,并且,鉴于可用的空气污染和其他暴露模型的日益精细化,地理编码错误可能会导致暴露分类错误的比例越来越大。我们使用来自纽约市所有医院的哮喘急诊就诊的相当大且密集的数据集(= 21,183;26.9 个地址/平方公里)中的住宅地址,并使用三种方法(地址点、街道段、包裹质心)对每个地址进行地理编码。我们比较了其中的缺失情况和空间模式,量化了距离和方向误差,并量化了对污染暴露估计值和人口普查区分配的影响,以进行社会人口特征描述。包裹质心的总体缺失率最高(38.1%,地址点=9.6%,街道段=6.1%),并且所有方法的缺失情况都存在显著的空间聚类,尽管其空间模式不同。街道段地理编码的平均距离误差最大(µ=29.2(SD=26.2)m;包裹质心的µ=15.9(SD=17.7)m),并且存在最强的空间模式。我们发现污染暴露的严重过高和过低估计,较高的污染物浓度会导致更大的误差,但对人口普查区分配的影响最小。最后,我们开发了误差空间模式的曲面,以便识别研究区域中可能存在过度/低估暴露的位置。我们的观察结果为完善流行病学中的地理编码方法提供了思路,并提出了量化和解释地理编码错误与暴露分类错误的方法,以了解其对健康效应估计的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5e/7459468/531b8ea76f91/ijerph-17-05845-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验