Suppr超能文献

基于动物、行为、环境和饲料变量估算放牧奶牛的干物质采食量。

Herbage dry matter intake estimation of grazing dairy cows based on animal, behavioral, environmental, and feed variables.

机构信息

Agroscope, 1725 Posieux, Switzerland; University of Bonn, Institute of Animal Science, 53115 Bonn, Germany.

University of Bonn, Institute of Animal Science, 53115 Bonn, Germany.

出版信息

J Dairy Sci. 2019 Apr;102(4):2985-2999. doi: 10.3168/jds.2018-14834. Epub 2019 Feb 1.

Abstract

Information about the individual herbage DMI (HDMI) of grazing dairy cows is important for an efficient use of pasture herbage as an animal feed with a range of benefits. Estimating HDMI, with its multifaceted influencing variables, is difficult but may be attempted using animal, performance, behavior, and feed variables. In our study, 2 types of approaches were explored: 1 for HDMI estimation under a global approach (GA), where all variables measured in the 4 underlying experiments were used for model development, and 1 for HDMI estimation in an approach without information about the amount of supplements fed in the barn (WSB). The accuracy of these models was assessed. The underlying data set was developed from 4 experiments with 52 GA and 50 WSB variables and one hundred thirty 7-d measurements. The experiments differed in pasture size, herbage allowance, pregrazing herbage mass, supplements fed in the barn, and sward composition. In all the experiments, cow behavioral characteristics were recorded using the RumiWatch system (Itin and Hoch GmbH, Liestal, Switzerland). Herbage intake was estimated by applying the n-alkane method. Finally, HDMI estimation models with a minimal relative prediction error of 11.1% for use under GA and 13.2% for use under WSB were developed. The variables retained for the GA model with the highest accuracy, determined through various selection steps, were herbage crude protein, chopped whole-plant corn silage intake in the barn, protein supplement or concentrate intake in the barn, body weight, milk yield, milk protein, milk lactose, lactation number, postgrazing herbage mass, and bite rate performed at pasture. Instead of the omitted amounts of feed intake in the barn and, due to the statistical procedure for model reduction, the unconsidered variables postgrazing herbage mass and bite rate performed at pasture, the WSB model with the highest accuracy retained additional variables. The additional variables were total eating chews performed at pasture and in the barn, total eating time performed at pasture, number of total prehension bites, number of prehension bites performed at pasture, and herbage ash concentration. Even though behavioral characteristics alone did not allow a sufficiently accurate individual HDMI estimation, their inclusion under WSB improved estimation accuracy and represented the most valid variables for the HDMI estimation under WSB. Under GA, the inclusion of behavioral characteristics in the HDMI estimation models did not reduce the root mean squared prediction error. Finally, further adaptation, as well as validation on a more comprehensive data set and the inclusion of variables excluded in this study such as body condition score or gestation, should be considered in the development of HDMI estimation models.

摘要

有关放牧奶牛个体干物质采食量(DMI)的信息对于有效利用牧草作为动物饲料具有重要意义,因为这可以带来一系列好处。估计 DMI 是具有多方面影响变量的困难任务,但可以尝试使用动物、性能、行为和饲料变量进行估计。在我们的研究中,探索了 2 种方法:1 种是在全局方法(GA)下进行 HDMI 估计的方法,其中使用 4 个基础实验中测量的所有变量来开发模型;1 种是在不考虑棚内补充饲料量的方法(WSB)下进行 HDMI 估计的方法。评估了这些模型的准确性。基础数据集是由 4 个实验开发的,其中包含 52 个 GA 和 50 个 WSB 变量和 130 个 7 天测量值。实验在牧场大小、牧草允许量、放牧前牧草量、棚内补充饲料和草丛组成方面存在差异。在所有实验中,使用 RumiWatch 系统(Itin 和 Hoch GmbH,瑞士利斯塔尔)记录奶牛的行为特征。通过应用正烷烃法估计牧草采食量。最后,为了在 GA 下使用,开发了 HDMI 估计模型,其最小相对预测误差为 11.1%;为了在 WSB 下使用,开发了 HDMI 估计模型,其最小相对预测误差为 13.2%。通过各种选择步骤,确定了具有最高准确性的 GA 模型中保留的变量,这些变量包括牧草粗蛋白、棚内切碎全株玉米青贮饲料采食量、棚内蛋白质补充剂或浓缩饲料采食量、体重、产奶量、乳蛋白、乳乳糖、泌乳次数、放牧后牧草量和牧场咀嚼率。而不是忽略的棚内饲料摄入量和由于模型简化的统计程序而忽略的变量,放牧后牧草量和牧场咀嚼率,具有最高准确性的 WSB 模型保留了更多的变量。保留的附加变量包括牧场和棚内总咀嚼次数、牧场总咀嚼时间、总采食次数、牧场采食次数和牧草灰分浓度。尽管行为特征本身无法进行足够准确的个体 HDMI 估计,但在 WSB 下包含这些特征可以提高估计准确性,并代表 WSB 下 HDMI 估计的最有效变量。在 GA 下,在 HDMI 估计模型中包含行为特征并没有降低均方根预测误差。最后,在更全面的数据集上进一步进行适应性调整,并考虑包含本研究中排除的变量,例如身体状况评分或妊娠期,应在 HDMI 估计模型的开发中加以考虑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验