Cooper John F, Sturner Steven J
Heliospheric Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
Goddard Planetary Heliophysics Institute, University of Maryland, Baltimore County, Baltimore, MD, USA.
J Geophys Res Space Phys. 2018 Sep;123(9):7473-7485. doi: 10.1029/2018JA025583. Epub 2018 Aug 7.
Saturn's main rings have an energetic particle and gamma ray photon radiation environment produced by ring interactions of galactic cosmic ray (GCR) protons and heavier ions penetrating the planetary dipolar magnetic field. Accurate models of this radiation environment are important for interpretation of Pioneer 11 and Cassini in situ measurements near the rings and for constraints on radiolytic contributions to neutral gas production and ice chemistry. A GEANT (GEometry ANd Tracking) based simulation is used to model flux spectra of protons, electrons, positrons, charged pions, neutrons, and gamma ray photons emitted from GCR interactions with HO ice spheres approximating the ring material. Dependent on location in the A to D rings within the planetary magnetic field of Saturn, only GCR protons above respective energies of 20 to 72 GeV can reach the rings without being deflected away by the magnetic field. Calculated differential and integral fluxes from our simulations have good agreement with in situ Pioneer-11 measurements in selected energy channels. The charged particle and neutral radiation measurements are sensitive, respectively, to the sizes and areal mass densities of ring bodies. Computed gamma ray emission fluxes are 8% of our calculated limit for detection from the Earth by the Fermi Large Area Telescope. Addition of charged particle sensors and neutron-photon imaging spectrometers to a future Saturn Ring Observer mission would provide valuable information on the ring mass structure. The present paper provides a foundation for modeling of Pioneer 11 and Cassini radiation measurements across the main rings and future measurements of radiation from the rings.
土星的主环存在一个高能粒子和伽马射线光子辐射环境,该环境由穿透行星偶极磁场的银河宇宙射线(GCR)质子和重离子与环的相互作用产生。准确模拟这种辐射环境对于解读先驱者11号和卡西尼号在环附近的原位测量结果以及限制辐射分解对中性气体产生和冰化学的贡献至关重要。基于GEANT(几何与追踪)的模拟被用于对GCR与近似环物质的HO冰球相互作用所发射的质子、电子、正电子、带电π介子、中子和伽马射线光子的通量谱进行建模。取决于在土星行星磁场内A至D环中的位置,只有能量分别高于20至72 GeV的GCR质子能够在不被磁场偏转而到达环。我们模拟计算出的微分通量和积分通量在选定的能量通道与先驱者11号的原位测量结果具有良好的一致性。带电粒子和中性辐射测量分别对环体的大小和面质量密度敏感。计算出的伽马射线发射通量为我们计算的费米大面积望远镜从地球探测极限的8%。在未来的土星环观测任务中增加带电粒子传感器和中子-光子成像光谱仪将提供有关环质量结构的宝贵信息。本文为对跨越主环的先驱者11号和卡西尼号辐射测量以及未来环辐射测量进行建模奠定了基础。