Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland.
Department of Biomaterials Chemistry, Faculty of Pharmacy with Laboratory Medicine Division , Medical University of Warsaw , Banacha 1 , 02-097 Warsaw , Poland.
ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9265-9276. doi: 10.1021/acsami.8b17951. Epub 2019 Feb 20.
We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50 and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.
我们提出了一种改进的方法,通过表面印迹和半共价印迹的结合,在分子印迹聚合物(MIP)中制备高选择性和均一的分子空腔。为此,首先通过 Langmuir-Blodgett(LB)技术制备胶体晶体模具。然后,将人绒毛膜促性腺激素(hCG)模板蛋白固定在胶体晶体模具上。接着,通过酰胺化学将 hCG 衍生化为具有电活性的功能单体。在最后一步,通过优化的恒电位聚合 2,3'-联噻吩,沉积了作为大孔结构的 MIP 膜。这种协同策略导致分子印迹空腔仅在大孔的内表面上形成,在硅石模具溶解后即可进入。大孔 MIP 膜对 hCG 的识别是借助于电传感器,即扩展门场效应晶体管(EG-FET)和电容阻抗谱(CI)来实现的。这些读出策略提供了用于无标记测定 hCG 激素的化学传感器的创建能力。除了简单地确认怀孕外,hCG 测定还是异位妊娠或滋养细胞瘤诊断和随访的常用工具。这些基于 EG-FET 和 CI 的设备进行的浓度测量允许实时测量 hCG 在 0.8-50 和 0.17-2.0 fM 范围内的浓度,分别在 10 mM 碳酸盐缓冲液(pH = 10)中。此外,化学传感器对蛋白质干扰的选择性非常高。