Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33607 Pessac , France.
Univ. Bordeaux, Inserm, CNRS, ARNA Laboratory, U1212, UMR 5320, Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33076 Pessac , France.
J Am Chem Soc. 2019 Feb 13;141(6):2516-2525. doi: 10.1021/jacs.8b12240. Epub 2019 Feb 4.
A number of foldamer backbones have been described as useful mimics of protein secondary structure elements, enabling for example the design of synthetic oligomers with the ability to engage specific protein surfaces. Synthetic folded backbones can also be used to create artificial proteins in which a folded peptide segment (e.g., an α-helix, a loop) is replaced by its unnatural counterpart, with the expectation that the resulting molecule would maintain its ability to fold while manifesting new exploitable features. The similarities in screw sense, pitch, and polarity between peptide α-helices and oligourea 2.5-helices suggest that a tertiary structure could be retained when swapping the two backbones in a protein sequence. In the present work, we move a step toward the creation of such composite proteins by replacing the 10-residue long original α-helical segment in the Cys2His2 zinc finger 3 of transcription factor Egr1 (also known as Zif268) by an oligourea sequence bearing two appropriately spaced imidazole side chains for zinc coordination. We show by spectroscopic techniques and mass spectrometry analysis under native conditions that the ability of the peptide/oligourea hybrid to coordinate the zinc ion is not affected by the foldamer replacement. Moreover, detailed NMR analysis provides evidence that the engineered zinc finger motif adopts a folded structure in which the native β-sheet arrangement of the peptide region and global arrangement of DNA-binding side chains are preserved. Titration in the presence of the Egr1 target DNA sequence supports binding to GC bases as reported for the wild-type zinc finger.
许多折叠体骨架被描述为蛋白质二级结构元件的有用模拟物,例如,能够设计具有与特定蛋白质表面结合能力的合成低聚物。合成折叠骨架还可用于创建人工蛋白质,其中折叠肽段(例如α-螺旋、环)被其非天然对应物取代,预期所得分子将保持其折叠能力,同时表现出新的可利用特征。肽α-螺旋和寡脲 2.5-螺旋在螺旋方向、螺距和极性方面的相似性表明,在蛋白质序列中交换两种骨架时,可以保留三级结构。在本工作中,我们通过在转录因子 Egr1(也称为 Zif268)的 Cys2His2 锌指 3 中的 10 个残基长的原始α-螺旋片段中替换为具有两个适当间隔的咪唑侧链以用于锌配位的寡脲序列,朝着创建这种复合蛋白质迈出了一步。我们通过光谱技术和质谱分析在天然条件下表明,肽/寡脲杂合体与锌离子配位的能力不受折叠体取代的影响。此外,详细的 NMR 分析提供了证据,表明工程化的锌指模体采用折叠结构,其中保留了肽区域的天然β-折叠排列和 DNA 结合侧链的整体排列。在存在 Egr1 靶 DNA 序列的情况下进行滴定支持与 GC 碱基的结合,如野生型锌指报告的那样。