Suppr超能文献

探讨基于模型和无模型成像生物标志物作为新辅助乳腺癌治疗结果的早期预测因子的作用。

Investigating the Role of Model-Based and Model-Free Imaging Biomarkers as Early Predictors of Neoadjuvant Breast Cancer Therapy Outcome.

出版信息

IEEE J Biomed Health Inform. 2019 Sep;23(5):1834-1843. doi: 10.1109/JBHI.2019.2895459. Epub 2019 Jan 31.

Abstract

Imaging biomarkers (IBs) play a critical role in the clinical management of breast cancer (BRCA) patients throughout the cancer continuum for screening, diagnosis, and therapy assessment, especially in the neoadjuvant setting. However, certain model-based IBs suffer from significant variability due to the complex workflows involved in their computation, whereas model-free IBs have not been properly studied regarding clinical outcome. In this study, IBs from 35 BRCA patients who received neoadjuvant chemotherapy (NAC) were extracted from dynamic contrast-enhanced MR imaging (DCE-MRI) data with two different approaches, a model-free approach based on pattern recognition (PR), and a model-based one using pharmacokinetic compartmental modeling. Our analysis found that both model-free and model-based biomarkers can predict pathological complete response (pCR) after the first cycle of NAC. Overall, eight biomarkers predicted the treatment response after the first cycle of NAC, with statistical significance (p-value < 0.05), and three at the baseline. The best pCR predictors at first follow-up, achieving high AUC and sensitivity and specificity more than 50%, were the hypoxic component with threshold 2 (AUC 90.4%) from the PR method, and the median value of k (AUC 73.4%) from the model-based approach. Moreover, the 80 percentile of v achieved the highest pCR prediction at baseline with AUC 78.5%. The results suggest that the model-free DCE-MRI IBs could be a more robust alternative to complex, model-based ones such as k and favor the hypothesis that the PR image-derived hypoxic image component captures actual tumor hypoxia information able to predict BRCA NAC outcome.

摘要

成像生物标志物 (IBs) 在乳腺癌 (BRCA) 患者的整个癌症连续体中发挥着关键作用,可用于筛查、诊断和治疗评估,尤其是在新辅助治疗环境中。然而,某些基于模型的 IBs 由于其计算涉及到复杂的工作流程而存在显著的可变性,而基于模型的 IBs 尚未针对临床结果进行适当研究。在这项研究中,从 35 名接受新辅助化疗 (NAC) 的 BRCA 患者的动态对比增强磁共振成像 (DCE-MRI) 数据中提取了两种不同方法的 IBs,一种是基于模式识别 (PR) 的无模型方法,另一种是基于药代动力学室模型的模型方法。我们的分析发现,无模型和基于模型的生物标志物都可以预测 NAC 第一周期后的病理完全缓解 (pCR)。总体而言,有八个生物标志物可以预测 NAC 第一周期后的治疗反应,具有统计学意义 (p 值<0.05),并且在基线时有三个生物标志物。在第一次随访时,具有最高 AUC 和灵敏度和特异性的最佳 pCR 预测因子是 PR 方法中阈值为 2 的缺氧成分 (AUC 为 90.4%),以及基于模型方法的 k 的中位数 (AUC 为 73.4%)。此外,v 的第 80 百分位数在基线时具有最高的 pCR 预测 AUC 为 78.5%。结果表明,无模型 DCE-MRI IBs 可能是一种比复杂的基于模型的 IBs(如 k)更稳健的替代方法,并支持 PR 图像衍生的缺氧图像成分捕获能够预测 BRCA NAC 结果的实际肿瘤缺氧信息的假说。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验