Suppr超能文献

高氮掺杂量石墨烯纳米带增强的锂存储性能。

Enhanced lithium storage performance of graphene nanoribbons doped with high content of nitrogen atoms.

机构信息

Key Laboratory of Nanodevices and Applications & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

出版信息

Nanotechnology. 2019 May 31;30(22):225401. doi: 10.1088/1361-6528/ab0434. Epub 2019 Feb 4.

Abstract

Nitrogen doping can provide a large number of active sites for lithium-ion storage, thus can yield a higher capacity for lithium-ion batteries. However, most of the reported N-doped graphene-based materials have low nitrogen content (<10 wt%) as the introduction of nitrogen atoms prefer to be produced at edges and defects in the graphene lattices. Owing to the formation of edges and defects, the doped states or active sites can easily be located and nitrogen contents can be determined precisely. Here we present the preparation of N-doped graphene nanoribbons with high nitrogen contents (11.8 wt%) and a facile tunable configuration of doped states. The material can be used as an anode for lithium-ion batteries and shows a higher capacity (the electrode has a reversible capacity of 1100.34 mA h g at a charge/discharge rate of 100 mA g, corresponds to a discharge time of about 9 h), better rate performance (the electrode has a reversible capacity of 471 mA h g at the current density of 2 A g, corresponds to a discharge time of about 11.6 min) and improved cycling stability (87.37% of the initial capacity after 200 cycles). The experimental results and first-principle calculations suggest that the residual oxygen-containing functional groups of N-doped graphene nanoribbons promote the formation of pyrrolic nitrogen at edges and substantially increase the room for nitrogen doping. This work opens new strategies for designing and developing N-doped graphene anodes for high performance lithium-ion batteries.

摘要

氮掺杂可以为锂离子存储提供大量的活性位,从而为锂离子电池提供更高的容量。然而,大多数报道的氮掺杂石墨烯基材料的氮含量较低(<10wt%),因为氮原子的引入倾向于在石墨烯晶格的边缘和缺陷处生成。由于边缘和缺陷的形成,掺杂态或活性位很容易被定位,并且氮含量可以被精确地确定。在这里,我们提出了一种具有高氮含量(11.8wt%)和可调节掺杂态的氮掺杂石墨烯纳米带的制备方法。该材料可用作锂离子电池的阳极,表现出更高的容量(在 100mA g 的充放电速率下,电极具有 1100.34 mA h g 的可逆容量,相当于约 9 小时的放电时间)、更好的倍率性能(在 2A g 的电流密度下,电极具有 471 mA h g 的可逆容量,相当于约 11.6 分钟的放电时间)和改进的循环稳定性(在 200 次循环后,初始容量的 87.37%)。实验结果和第一性原理计算表明,氮掺杂石墨烯纳米带中的残留含氧官能团促进了边缘处吡咯型氮的形成,并且大大增加了氮掺杂的空间。这项工作为设计和开发高性能锂离子电池的氮掺杂石墨烯阳极开辟了新的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验