Suppr超能文献

利用中红外和近红外光谱结合化学计量学同时识别12种著名绿茶的品种、品质等级并对抗氧化活性进行多变量校准

Simultaneous Recognition of Species, Quality Grades, and Multivariate Calibration of Antioxidant Activities for 12 Famous Green Teas Using Mid- and Near-Infrared Spectroscopy Coupled with Chemometrics.

作者信息

Fu Haiyan, Hu Ou, Xu Lu, Fan Yao, Shi Qiong, Guo Xiaoming, Lan Wei, Yang Tianming, Xie Shunping, She Yuanbin

机构信息

The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.

College of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China.

出版信息

J Anal Methods Chem. 2019 Jan 2;2019:4372395. doi: 10.1155/2019/4372395. eCollection 2019.

Abstract

In this paper, mid- and near-infrared spectroscopy fingerprints were combined to simultaneously discriminate 12 famous green teas and quantitatively characterize their antioxidant activities using chemometrics. A supervised pattern recognition method based on partial least square discriminant analysis (PLSDA) was adopted to classify the 12 famous green teas with different species and quality grades, and then optimized sample-weighted least-squares support vector machine (OSWLS-SVM) based on particle swarm optimization was employed to investigate the quantitative relationship between their antioxidant activities and the spectral fingerprints. As a result, 12 famous green teas can be discriminated with a recognition rate of 100% by MIR or NIR data. However, compared with individual instrumental data, data fusion was more adequate for modeling the antioxidant activities of samples with RMSEP of 0.0065. Finally, the performance of the proposed method was evaluated and validated by some statistical parameters and the elliptical joint confidence region (EJCR) test. The results indicate that fusion of mid- and near-infrared spectroscopy suggests a new avenue to discriminate the species and grades of green teas. Moreover, the proposed method also implies other promising applications with more accurate multivariate calibration of antioxidant activities.

摘要

本文将中红外和近红外光谱指纹相结合,运用化学计量学方法同时鉴别12种著名绿茶,并对其抗氧化活性进行定量表征。采用基于偏最小二乘判别分析(PLSDA)的监督模式识别方法对12种不同品种和质量等级的著名绿茶进行分类,然后采用基于粒子群优化的优化样本加权最小二乘支持向量机(OSWLS-SVM)研究其抗氧化活性与光谱指纹之间的定量关系。结果表明,利用中红外或近红外数据可100%识别率鉴别12种著名绿茶。然而,与单个仪器数据相比,数据融合更适合对样品的抗氧化活性进行建模,其预测均方根误差(RMSEP)为0.0065。最后,通过一些统计参数和椭圆联合置信区域(EJCR)检验对所提方法的性能进行了评估和验证。结果表明,中红外和近红外光谱融合为鉴别绿茶的品种和等级提供了一条新途径。此外,所提方法还意味着在抗氧化活性的更精确多元校准方面有其他有前景的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c623/6334341/9c12d35b8774/JAMC2019-4372395.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验