State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, PR China.
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
Chemistry. 2019 Apr 1;25(19):5058-5064. doi: 10.1002/chem.201806074. Epub 2019 Mar 12.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C N sample has superior activity to Ag/g-C N and Pd/g-C N photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C N , the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H O dissociation to radical species on the AgPd/g-C N photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C N , that is, Pd ⋅⋅⋅Ag , and the activation energy of H O molecule dissociation on AgPd/g-C N is the lowest, which is the main contributor to the enhanced photocatalytic H evolution.
已经合成了双金属 AgPd 纳米粒子,但对 AgPd 界面电子效应对光催化性能的影响研究较少。在这项工作中,氢气生成的结果表明,双金属 AgPd/g-C3N 样品比 Ag/g-C3N 和 Pd/g-C3N 光催化剂具有更高的活性。紫外/可见漫反射光谱、X 射线光电子能谱、CO 吸附漫反射傅里叶变换红外光谱和傅里叶变换红外结果表明,在 AgPd/g-C3N 中,Pd 和 Ag 的表面电子结构发生了变化,这有利于更快地进行光生电子转移和更大程度地吸附 H2O 分子。原位 ESR 谱表明,在可见光照射下,AgPd/g-C3N 光催化剂上有更多的 H2O 分解为自由基。此外,DFT 计算证实了 AgPd/g-C3N 的界面电子效应,即 Pd···Ag,并且 H2O 分子在 AgPd/g-C3N 上的解离活化能最低,这是增强光催化 H2 演化的主要贡献。