Suppr超能文献

在黑暗中呈现非线性:具有超高效率的太赫兹宽带产生。

Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency.

机构信息

Ames Laboratory-U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA.

Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China.

出版信息

Phys Rev Lett. 2019 Jan 18;122(2):027401. doi: 10.1103/PhysRevLett.122.027401.

Abstract

Plasmonic metamaterials and metasurfaces offer new opportunities in developing high performance terahertz emitters and detectors beyond the limitations of conventional nonlinear materials. However, simple meta-atoms for second-order nonlinear applications encounter fundamental trade-offs in the necessary symmetry breaking and local-field enhancement due to radiation damping that is inherent to the operating resonant mode and cannot be controlled separately. Here we present a novel concept that eliminates this restriction obstructing the improvement of terahertz generation efficiency in nonlinear metasurfaces based on metallic nanoresonators. This is achieved by combining a resonant dark-state metasurface, which locally drives nonlinear nanoresonators in the near field, with a specific spatial symmetry that enables destructive interference of the radiating linear moments of the nanoresonators, and perfect absorption via simultaneous electric and magnetic critical coupling of the pump radiation to the dark mode. Our proposal allows eliminating linear radiation damping, while maintaining constructive interference and effective radiation of the nonlinear components. We numerically demonstrate a giant second-order nonlinear susceptibility ∼10^{-11}  m/V, a one order improvement compared with the previously reported split-ring-resonator metasurface, and correspondingly, a 2 orders of magnitude enhanced terahertz energy extraction should be expected with our configuration under the same conditions. Our study offers a paradigm of high efficiency tunable nonlinear metadevices and paves the way to revolutionary terahertz technologies and optoelectronic nanocircuitry.

摘要

等离子体超材料和超表面为开发高性能太赫兹发射器和探测器提供了新的机会,超越了传统非线性材料的限制。然而,对于二阶非线性应用的简单亚原子结构,由于辐射阻尼是工作共振模式固有的,无法单独控制,因此在必要的对称性破坏和局部场增强方面存在基本的权衡。在这里,我们提出了一种新的概念,该概念消除了基于金属纳米谐振器的非线性超表面中阻碍太赫兹产生效率提高的这一限制。这是通过将局部驱动近场中非线性纳米谐振器的共振暗态超表面与特定的空间对称性相结合来实现的,该空间对称性可以使纳米谐振器的辐射线性矩发生相消干涉,并通过泵浦辐射对暗模式的同时电和磁临界耦合实现完美吸收。我们的方案允许消除线性辐射阻尼,同时保持非线性元件的相长干涉和有效辐射。我们通过数值演示了约 10^{-11}  m/V 的二阶非线性灵敏度,与之前报道的分裂环谐振器超表面相比提高了一个数量级,并且在相同条件下,预计我们的配置将使太赫兹能量提取增强 2 个数量级。我们的研究提供了高效率可调谐非线性超材料的范例,并为太赫兹技术和光电纳米电路开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验