School of Mathematics and Physics , China University of Geosciences (Wuhan) , Wuhan 430074 , Hubei , China.
Department of Physics , The Chinese University of Hong Kong , Shatin, Hong Kong SAR , China.
Nano Lett. 2019 Mar 13;19(3):2005-2011. doi: 10.1021/acs.nanolett.9b00020. Epub 2019 Feb 8.
The magnetic plasmons of three-dimensional nanostructures have unique optical responses and special significance for optical nanoresonators and nanoantennas. In this study, we have successfully synthesized colloidal Au and AuAg nanocups with a well-controlled asymmetric geometry, tunable opening sizes, and normalized depths ( h/ b, where h is depth and b is the height of the templating PbS nanooctahedrons), variable magnetic plasmon resonance, and largely enhanced second-harmonic generation (SHG). The most-efficient SHG of the bare Au nanocups is experimentally observed when the normalized depth h/ b is adjusted to ∼0.78-0.79. We find that the average magnetic field enhancement is maximized at h/ b = ∼0.65 and reveal that the maximal SHG can be attributed to the joint action of the optimized magnetic plasmon resonance and the "lightning-rod effect" of the Au nanocups. Furthermore, we demonstrate for the first time that the AuAg heteronanocups prepared by overgrowth of Ag on the Au nanocups can synergize the magnetic and electric plasmon resonances for nonlinear enhancement. By the tailoring of the dual resonances at the fundamental excitation and second-harmonic wavelengths, the far-field SHG intensity of the AuAg nanocups is enhanced 21.8-fold compared to that of the bare Au nanocups. These findings provide a strategy for the design of nonlinear optical nanoantennas based on magnetic plasmon resonances and can lead to diverse applications ranging from nanophotonics to biological spectroscopy.
三维纳米结构的磁性等离子体具有独特的光学响应,对于光学纳米谐振器和纳米天线具有特殊意义。在这项研究中,我们成功合成了胶体 Au 和 AuAg 纳米杯,其具有良好控制的不对称几何形状、可调开口尺寸和归一化深度(h/b,其中 h 是深度,b 是模板 PbS 纳米八面体的高度)、可变磁性等离子体共振和大大增强的二次谐波产生(SHG)。当归一化深度 h/b 调整到约 0.78-0.79 时,实验观察到裸 Au 纳米杯的最高效 SHG。我们发现平均磁场增强在 h/b =约 0.65 时达到最大值,并揭示出最大的 SHG 可以归因于优化的磁性等离子体共振和 Au 纳米杯的“避雷针效应”的共同作用。此外,我们首次证明,通过在 Au 纳米杯上外延生长 Ag 制备的 AuAg 异质纳米杯可以协同增强磁性和电等离子体共振以进行非线性增强。通过在基频激发和二次谐波波长处的双共振的调整,AuAg 纳米杯的远场 SHG 强度比裸 Au 纳米杯增强了 21.8 倍。这些发现为基于磁性等离子体共振的非线性光学纳米天线的设计提供了一种策略,并可以导致从纳米光子学到生物光谱学的各种应用。