Department of Chemistry, Payame Noor University , Tehran , Iran.
Department of Chemistry, University of Birjand , Birjand , Iran.
J Biomol Struct Dyn. 2019 Nov;37(18):4852-4862. doi: 10.1080/07391102.2019.1567385. Epub 2019 Feb 5.
In this study, the adsorption of Hydroxyurea (HU) onto the inner and outer surfaces of boron nitride and carbon nanotubes (CNTs) was investigated using the density functional theory calculations and molecular dynamics (MDs) simulations in aqueous solution. The values of the adsorption energy show that HU molecule is preferentially adsorbed inside of boron nitride and CNTs with the molecular axis parallel to the tubes axis, which means that the cavity of nanotubes is favorable for encapsulation of this drug. Also, it was found that the HU/boron nitride nanotube (BNNT) system is more stable than the HU/CNT system. The stability of the complexes of HU/ BNNT attributed to the formation of the intermolecular hydrogen bonds between the H atoms of HU molecule and the N atoms of BNNT, which is confirmed by Bader's quantum theory of atoms in molecules. The natural bond orbital analysis shows the charge transfers occur from HU molecule to nanotubes in all complexes. Moreover, the adsorption of HU molecule on the surfaces of the nanotubes was investigated by explicit water models. Also, the adsorption behavior of HU on the functionalized boron nitride and CNTs is investigated to design and develop new nanocarriers for biomedical applications. Furthermore, MDs simulations are examined in the presence of one and two drug molecules. The obtained results illustrate that the lowest value of Lennard-Jones (L-J) energy between drug and nanotubes exist in the simulation system with two drug molecules.
在这项研究中,使用密度泛函理论计算和分子动力学(MDs)模拟在水溶液中研究了羟脲(HU)在氮化硼和碳纳米管(CNTs)内外表面的吸附。吸附能的值表明,HU 分子优先被吸附在 BNNTs 和 CNTs 内部,分子轴与管轴平行,这意味着纳米管的空腔有利于封装这种药物。此外,还发现 HU/BNNT 体系比 HU/CNT 体系更稳定。HU/BNNT 配合物的稳定性归因于 HU 分子的 H 原子与 BNNT 的 N 原子之间形成的分子间氢键,这通过 Bader 原子分子量子理论得到了证实。自然键轨道分析表明,所有配合物中电荷都从 HU 分子转移到纳米管上。此外,还通过显式水分子模型研究了 HU 分子在纳米管表面的吸附。此外,还研究了 HU 在功能化氮化硼和 CNTs 上的吸附行为,以设计和开发用于生物医学应用的新型纳米载体。此外,还检查了存在一个和两个药物分子的 MDs 模拟。所得结果表明,在含有两个药物分子的模拟系统中,药物与纳米管之间的最低 Lennard-Jones(L-J)能量值存在。