Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, 480-1192, Japan.
Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
Nat Commun. 2019 Feb 5;10(1):596. doi: 10.1038/s41467-019-08536-z.
In non-aqueous lithium-oxygen batteries, the one-electron reduction of oxygen and subsequent lithium oxide formation both occur during discharge. This lithium oxide can be converted to insulating lithium peroxide via two different pathways: a second reduction at the cathode surface or disproportionation in solution. The latter process is known to be advantageous with regard to increasing the discharge capacity and is promoted by a high donor number electrolyte because of the stability of lithium oxide in media of this type. Herein, we report that the cathodic oxygen reduction reaction during discharge typically exhibits negative differential resistance. Importantly, the magnitude of negative differential resistance, which varies with the system component, and the position of the cathode potential relative to the negative differential resistance determined the reaction pathway and the discharge capacity. This result implies that the stability of lithium oxide on the cathode also contributes to the determination of the reaction pathway.
在非水锂-氧电池中,氧气的单电子还原和随后的氧化锂形成都发生在放电过程中。这种氧化锂可以通过两种不同的途径转化为不导电的过氧化锂:在阴极表面的第二次还原或在溶液中的歧化。后一种过程有利于增加放电容量,并且由于高给体数电解质的存在而得到促进,因为在这种类型的介质中氧化锂是稳定的。在这里,我们报告说,在放电过程中,阴极氧还原反应通常表现出负微分电阻。重要的是,负微分电阻的大小随系统成分的不同而变化,以及阴极电位相对于负微分电阻的位置决定了反应途径和放电容量。这一结果表明,阴极上氧化锂的稳定性也有助于确定反应途径。