Suppr超能文献

基于 QuEChERS 的提取程序与 UPLC-MS/MS 检测联用分析啤酒中的真菌毒素。

A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer.

机构信息

Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.

Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Laboratario CIFGA S.A., Plaza de Santo Domingo, no. 20, 5a planta, 27001 Lugo, Spain.

出版信息

Food Chem. 2019 Mar 1;275:703-710. doi: 10.1016/j.foodchem.2018.09.162. Epub 2018 Sep 27.

Abstract

A new method based on a QuEChERS extraction followed by the ultra-high liquid chromatography tandem mass spectrometry (UPLC-MS/MS) detection has been developed for the analysis of mycotoxin in beer. The method allows the identification and quantification of 23 mycotoxins with different chemical characteristic including regulated, emerging and masked compounds. A sample treatment procedure involving a QuEChERS extraction and dispersive solid-phase clean-up steps was applied. This protocol involves a new approach based on a sample concentration before the extraction. The method was in-house validated in terms of limits of detection (LODs), limits of quantification (LOQs), linearity, repeatability and recoveries. For most compounds, recoveries ranged from 70% to 110% with LOQs (from 0.038 to 30.43 µg/L) lower than the maximum residue levels established in European regulations. In general, acceptable performance characteristics were obtained fulfilling the current legislation. Therefore, the proposed method is appropriate for routine analysis of beer.

摘要

建立了一种基于 QuEChERS 提取结合超高效液相色谱串联质谱(UPLC-MS/MS)检测的方法,用于分析啤酒中的真菌毒素。该方法可以识别和定量分析具有不同化学特性的 23 种真菌毒素,包括受监管、新兴和掩蔽化合物。采用了一种涉及 QuEChERS 提取和分散固相净化步骤的样品处理程序。该方法基于提取前的样品浓缩,提出了一种新方法。该方法在检出限(LOD)、定量限(LOQ)、线性、重复性和回收率方面进行了内部验证。对于大多数化合物,回收率在 70%到 110%之间,LOQ(从 0.038 到 30.43μg/L)低于欧洲法规规定的最大残留限量。总的来说,该方法满足了当前法规的要求,获得了可接受的性能特征。因此,该方法适用于啤酒的常规分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验