Suppr超能文献

品种和季节对使用傅里叶变换近红外光谱法预测杏果实可溶性固形物含量的偏最小二乘模型稳健性的影响。

Effect of cultivar and season on the robustness of PLS models for soluble solid content prediction in apricots using FT-NIRS.

作者信息

Özdemir İbrahim Sani, Bureau Sylvie, Öztürk Bülent, Seyhan Ferda, Aksoy Hatice

机构信息

TUBITAK Marmara Research Center, Food Institute, P.O. Box 21, 41470 Gebze, Kocaeli Turkey.

UMR-A-408, SQPOV INRA, Domaine St Paul, Site Agroparc, 84914 Montfavet, Avignon Cedex 9, France.

出版信息

J Food Sci Technol. 2019 Jan;56(1):330-339. doi: 10.1007/s13197-018-3493-3. Epub 2018 Dec 10.

Abstract

FT-NIR models were developed for the non-destructive prediction of soluble solid content (SSC), titratable acidity (TA), firmness and weight of two commercially important apricot cultivars, "Hacıhaliloğlu" and "Kabaaşı" from Turkey. The models constructed for SSC prediction gave good results. We could also establish a model which can be used for rough estimation of the apricot weight. However, it could not be possible to predict accurately TA and firmness of the apricots with FT-NIR spectroscopy. The study was further extended over 3 years for the SSC prediction. Validation of the both mono and multi-cultivar models showed that model performances may exhibit important variations across different harvest seasons. The robustness of the models was improved when the data of two or three seasons were used. It was concluded that in order to developed reliable SSC prediction models for apricots the spectral data should be collected over several harvest seasons.

摘要

针对土耳其两个具有重要商业价值的杏品种“Hacıhaliloğlu”和“Kabaaşı”,开发了傅里叶变换近红外(FT-NIR)模型,用于无损预测其可溶性固形物含量(SSC)、可滴定酸度(TA)、硬度和重量。构建的用于SSC预测的模型取得了良好的结果。我们还建立了一个可用于粗略估计杏重量的模型。然而,利用FT-NIR光谱法无法准确预测杏的TA和硬度。为了进行SSC预测,该研究又持续了3年。单品种和多品种模型的验证表明,模型性能在不同收获季节可能会有显著差异。当使用两到三个季节的数据时,模型的稳健性得到了提高。得出的结论是,为了开发可靠的杏SSC预测模型,应在多个收获季节收集光谱数据。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验