Suppr超能文献

紧急医疗服务中的用药安全:寻求基于证据的核查方法以减少差错。

Medication safety in emergency medical services: approaching an evidence-based method of verification to reduce errors.

作者信息

Misasi Paul, Keebler Joseph R

机构信息

Wichita State University, 1845 N. Fairmount, Wichita, KS, 67260, USA.

Associate Professor, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.

出版信息

Ther Adv Drug Saf. 2019 Jan 21;10:2042098618821916. doi: 10.1177/2042098618821916. eCollection 2019.

Abstract

Lack of verification is often cited as a root cause of medication errors; however, medication errors occur in spite of conventional verification practices and it appears that human factors engineering (HFE) can inform the design of a more effective method. To this end, an HFE-driven process was designed and implemented in an urban, Midwestern emergency medical service agency. Medication error data were collected over a 54-month period, 27 months before and after implementation. A decrease in the average monthly error rate was realized for all medications administered (49.0%) during the post-intervention time period. The average monthly error rate for fentanyl, a commonly administered analgesic, demonstrated a 71.1% error rate decrease. This study is the first to evaluate the effectiveness of a team-based cross-check process for medication verification to prevent errors in the prehospital setting.

摘要

缺乏核查常被视为用药错误的一个根本原因;然而,尽管有传统的核查流程,用药错误仍会发生,而且似乎人因工程学(HFE)可以为设计一种更有效的方法提供依据。为此,在中西部城市的一家紧急医疗服务机构设计并实施了一个由人因工程学驱动的流程。在实施前后各27个月的54个月期间收集用药错误数据。干预后时间段内所有给药药物的平均每月错误率下降了(49.0%)。常用镇痛药芬太尼的平均每月错误率下降了71.1%。本研究首次评估了基于团队的交叉核对流程在院前环境中进行用药核查以预防错误的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验