Suppr超能文献

使用α-Co(OH)负载的原子铱电催化剂高效还原水相CO

Aqueous CO Reduction with High Efficiency Using α-Co(OH) -Supported Atomic Ir Electrocatalysts.

作者信息

Sun Xiaofu, Chen Chunjun, Liu Shoujie, Hong Song, Zhu Qinggong, Qian Qingli, Han Buxing, Zhang Jing, Zheng Lirong

机构信息

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2019 Mar 26;58(14):4669-4673. doi: 10.1002/anie.201900981. Epub 2019 Feb 27.

Abstract

Electrochemical reduction of CO into energy-dense chemical feedstock and fuels provides an attractive pathway to sustainable energy storage and artificial carbon cycle. Herein, we report the first work to use atomic Ir electrocatalyst for CO reduction. By using α-Co(OH) as the support, the faradaic efficiency of CO could reach 97.6 % with a turnover frequency (TOF) of 38290 h in aqueous electrolyte, which is the highest TOF up to date. The electrochemical active area is 23.4-times higher than Ir nanoparticles (2 nm), which is highly conductive and favors electron transfer from CO to its radical anion (CO ). Moreover, the more efficient stabilization of CO intermediate and easy charge transfer makes the atomic Ir electrocatalyst facilitate CO production. Hence, α-Co(OH) -supported atomic Ir electrocatalysts show enhanced CO activity and stability.

摘要

将CO电化学还原为能量密集型化学原料和燃料为可持续储能和人工碳循环提供了一条有吸引力的途径。在此,我们报道了第一项使用原子Ir电催化剂进行CO还原的工作。通过使用α-Co(OH)作为载体,在水性电解质中,CO的法拉第效率可达97.6%,周转频率(TOF)为38290 h ,这是迄今为止最高的TOF。其电化学活性面积比Ir纳米颗粒(2 nm)高23.4倍,具有高导电性,有利于电子从CO转移到其自由基阴离子(CO )。此外,CO 中间体更有效的稳定化和易于电荷转移使得原子Ir电催化剂促进了CO的生成。因此,α-Co(OH)负载的原子Ir电催化剂表现出增强的CO活性和稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验