Suppr超能文献

消除Cu(I)发光体中的非辐射衰变:量子效率>99%且寿命达微秒级

Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime.

作者信息

Hamze Rasha, Peltier Jesse L, Sylvinson Daniel, Jung Moonchul, Cardenas Jose, Haiges Ralf, Soleilhavoup Michele, Jazzar Rodolphe, Djurovich Peter I, Bertrand Guy, Thompson Mark E

机构信息

Department of Chemistry, University of Southern California, Los Angeles, CA, USA.

UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.

出版信息

Science. 2019 Feb 8;363(6427):601-606. doi: 10.1126/science.aav2865.

Abstract

Luminescent complexes of heavy metals such as iridium, platinum, and ruthenium play an important role in photocatalysis and energy conversion applications as well as organic light-emitting diodes (OLEDs). Achieving comparable performance from more-earth-abundant copper requires overcoming the weak spin-orbit coupling of the light metal as well as limiting the high reorganization energies typical in copper(I) [Cu(I)] complexes. Here we report that two-coordinate Cu(I) complexes with redox active ligands in coplanar conformation manifest suppressed nonradiative decay, reduced structural reorganization, and sufficient orbital overlap for efficient charge transfer. We achieve photoluminescence efficiencies >99% and microsecond lifetimes, which lead to an efficient blue-emitting OLED. Photophysical analysis and simulations reveal a temperature-dependent interplay between emissive singlet and triplet charge-transfer states and amide-localized triplet states.

摘要

铱、铂和钌等重金属的发光配合物在光催化、能量转换应用以及有机发光二极管(OLED)中发挥着重要作用。要使地球上储量更丰富的铜实现 comparable 性能,需要克服轻金属较弱的自旋 - 轨道耦合,并限制铜(I)[Cu(I)]配合物中典型的高重组能。在此,我们报道具有共面构象的含氧化还原活性配体的二配位 Cu(I)配合物表现出受抑制的非辐射衰变、减少的结构重组以及足够的轨道重叠以实现高效电荷转移。我们实现了大于 99%的光致发光效率和微秒级寿命,这导致了高效的蓝色发光 OLED。光物理分析和模拟揭示了发光单重态和三重态电荷转移态与酰胺定位的三重态之间的温度依赖性相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验