Suppr超能文献

利用现有最佳数据估算抗菌药物耐药性成本:系统评价。

Using the best available data to estimate the cost of antimicrobial resistance: a systematic review.

机构信息

1Centre for Research Excellence in Reducing Healthcare Associated Infections, Queensland University of Technology (QUT), Brisbane, QLD Australia.

3Australian Centre for Health Services Innovation, Queensland University of Technology (QUT), Brisbane, QLD Australia.

出版信息

Antimicrob Resist Infect Control. 2019 Feb 1;8:26. doi: 10.1186/s13756-019-0472-z. eCollection 2019.

Abstract

BACKGROUND

Valuation of the economic cost of antimicrobial resistance (AMR) is important for decision making and should be estimated accurately. Highly variable or erroneous estimates may alarm policy makers and hospital administrators to act, but they also create confusion as to what the most reliable estimates are and how these should be assessed. This study aimed to assess the quality of methods used in studies that quantify the costs of AMR and to determine the best available evidence of the incremental cost of these infections.

METHODS

In this systematic review, we searched PubMed, Embase, Cinahl, Cochrane databases and grey literature sources published between January 2012 and October 2016. Articles reporting the additional burden of , , , and () resistant versus susceptible infections were sourced. The included studies were broadly classified as reporting oncosts from the healthcare/hospital/hospital charges perspective or societal perspective. Risk of bias was assessed based on three methodological components: (1) adjustment for length of stay prior to infection onset and consideration of time-dependent bias, (2) adjustment for comorbidities or severity of disease, and (3) adjustment for inappropriate antibiotic therapy.

RESULTS

Of 1094 identified studies, we identified 12 peer-reviewed articles and two reports that quantified the economic burden of clinically important resistant infections. Two studies used multi-state modelling to account for the timing of infection minimising the risk of time dependent bias and these were considered to generate the best available cost estimates. Studies report an additional CHF 9473 per extended-spectrum beta-lactamases -resistant bloodstream infections (BSI); additional €3200 per third-generation cephalosporin resistant BSI; and additional €1600 per methicillin-resistant (MRSA) BSI. The remaining studies either partially adjusted or did not consider the timing of infection in their analysis.

CONCLUSIONS

Implementation of AMR policy and decision-making should be guided only by reliable, unbiased estimates of effect size. Generating these estimates requires a thorough understanding of important biases and their impact on measured outcomes. This will ensure that researchers, clinicians, and other key decision makers concerned with increasing public health threat of AMR are accurately guided by the best available evidence.

摘要

背景

评估抗菌药物耐药性(AMR)的经济成本对于决策很重要,并且应该进行准确的评估。高度可变或错误的估计可能会促使政策制定者和医院管理人员采取行动,但也会造成混乱,不知道最可靠的估计是什么,以及应该如何评估这些估计。本研究旨在评估量化 AMR 成本的研究中使用的方法的质量,并确定这些感染的增量成本的最佳现有证据。

方法

在这项系统评价中,我们检索了 PubMed、Embase、Cinahl、Cochrane 数据库和 2012 年 1 月至 2016 年 10 月间发表的灰色文献来源。我们收集了报告 、 、 、 和 ( )耐药感染比敏感感染的额外负担的文章。纳入的研究大致分为从医疗保健/医院/医院收费角度或社会角度报告增量成本的研究。基于三个方法学组成部分评估偏倚风险:(1)调整感染前的住院时间并考虑时间依赖性偏倚,(2)调整合并症或疾病严重程度,和(3)调整不适当的抗生素治疗。

结果

在 1094 项已识别的研究中,我们确定了 12 篇同行评议的文章和两份报告,这些文章量化了临床上重要的耐药感染的经济负担。有两项研究使用多状态模型来计算感染的时间,从而最大限度地减少时间依赖性偏倚的风险,这两项研究被认为产生了最佳的现有成本估计。研究报告称,每例产超广谱β-内酰胺酶(ESBL)耐药血流感染(BSI)增加 CHF9473 美元;每例第三代头孢菌素耐药 (ESBL)BSI 增加€3200;每例耐甲氧西林金黄色葡萄球菌(MRSA)BSI 增加€1600。其余的研究要么部分调整,要么在分析中没有考虑感染的时间。

结论

只有在对效应大小有可靠、无偏估计的情况下,才应实施 AMR 政策和决策。生成这些估计需要对重要偏差及其对测量结果的影响有透彻的了解。这将确保研究人员、临床医生和其他关注 AMR 对公共卫生威胁日益增加的关键决策者能够准确地获得最佳现有证据的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验