Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Block-JD2, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India.
Nanoscale. 2019 Feb 21;11(8):3414-3444. doi: 10.1039/c8nr09666j.
TiO2 and other titanium oxide-based nanomaterials have drawn immense attention from researchers in different scientific domains due to their fascinating multifunctional properties, relative abundance, environmental friendliness, and bio-compatibility. However, the physical and chemical properties of titanium oxide-based nanomaterials are found to be explicitly dependent on the presence of various crystal defects. Oxygen vacancies are the most common among them and have always been the subject of both theoretical and experimental research as they play a crucial role in tuning the inherent properties of titanium oxides. This review highlights different strategies for effectively introducing oxygen vacancies in titanium oxide-based nanomaterials, as well as a discussion on the positions of oxygen vacancies inside the TiO2 band gap based on theoretical calculations. Additionally, a detailed review of different experimental techniques that are extensively used for identifying oxygen vacancies in TiO2 nanostructures is also presented.
TiO2 及其他基于钛氧化物的纳米材料由于其迷人的多功能特性、相对丰富的储量、环境友好性和生物兼容性,引起了不同科学领域研究人员的极大关注。然而,基于钛氧化物的纳米材料的物理和化学性质被发现明显依赖于各种晶体缺陷的存在。氧空位是其中最常见的,一直是理论和实验研究的主题,因为它们在调整钛氧化物固有特性方面起着至关重要的作用。本综述强调了在基于钛氧化物的纳米材料中有效引入氧空位的不同策略,并根据理论计算讨论了氧空位在 TiO2 能带隙中的位置。此外,还详细回顾了用于识别 TiO2 纳米结构中氧空位的不同实验技术。