Suppr超能文献

一种新的用于预测耐甲氧西林金黄色葡萄球菌菌血症患者死亡率的简化预测模型。

A new simplified predictive model for mortality in methicillin-resistant Staphylococcus aureus bacteremia.

机构信息

Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, 48201, USA.

Department of Pharmacy, Detroit Medical Center, Detroit, MI, USA.

出版信息

Eur J Clin Microbiol Infect Dis. 2019 May;38(5):843-850. doi: 10.1007/s10096-018-03464-0. Epub 2019 Feb 8.

Abstract

Adjustment for confounding is important in observational methicillin-resistant Staphylococcus aureus bacteremia (MRSAB) studies due to the wide spectrum of disease severity and baseline health status that patients present with. The objectives of this study were to develop a simplified MRSAB-specific scoring model to estimate the risk of 30-day all-cause mortality and to compare its performance to the APACHE II and Pitt Bacteremia scores. Retrospective, singe-center, cohort study in adults with MRSAB 2008 to 2018. Independent predictors of mortality were identified through multivariable logistic regression. A scoring model was derived using a regression coefficient-based scoring method. Discriminatory ability was assessed using the c statistic. A total of 455 patients were included. Thirty-day mortality was 16.3%. The MRSAB score consisted of six variables: age, respiratory rate, Glasgow Coma scale, renal failure, hospital-acquired MRSAB, and infective endocarditis or lower respiratory tract infection source. The score demonstrated very good discrimination (c statistic 0.8662, 95% CI 0.824-0.909) and was superior to the APACHE II (P = 0.043) and the Pitt bacteremia (P < 0.001) scores. A weighted combination of six independent variables routinely measured in patients with MRSAB can be used to predict, with high discrimination, 30-day all-cause mortality. External validation is required before widespread use.

摘要

调整混杂因素在观察性耐甲氧西林金黄色葡萄球菌菌血症 (MRSAB) 研究中非常重要,因为患者的疾病严重程度和基线健康状况差异很大。本研究的目的是开发一种简化的 MRSAB 特异性评分模型,以估计 30 天全因死亡率的风险,并将其与急性生理与慢性健康状况评分 II (APACHE II) 和 Pitt 菌血症评分进行比较。回顾性、单中心、2008 年至 2018 年成人 MRSAB 队列研究。通过多变量逻辑回归确定死亡率的独立预测因素。使用基于回归系数的评分方法得出评分模型。使用 c 统计量评估区分能力。共纳入 455 例患者。30 天死亡率为 16.3%。MRSAB 评分包括 6 个变量:年龄、呼吸频率、格拉斯哥昏迷量表、肾衰竭、医院获得性 MRSAB 和感染性心内膜炎或下呼吸道感染源。该评分具有非常好的区分能力(c 统计量为 0.8662,95%CI 0.824-0.909),优于 APACHE II 评分(P=0.043)和 Pitt 菌血症评分(P<0.001)。可以使用常规测量的 6 个独立变量的加权组合来预测 MRSAB 患者的 30 天全因死亡率,具有较高的区分能力。在广泛应用之前需要进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验