Light, Nanomaterials, Nanotechnologies (L2n) , Institut Charles Delaunay, CNRS, Université de Technologie de Troyes , 10000 Troyes CEDEX , France.
ACS Sens. 2019 Mar 22;4(3):586-594. doi: 10.1021/acssensors.8b01068. Epub 2019 Feb 20.
Thanks to their small sensing volume, nanosensors based on localized surface plasmon resonances (LSPR) allow the detection of minute amounts of analytes, down to the single-molecule limit. However, the detected analytes are often large molecules, such as proteins. The detection of small molecules remains largely unexplored. Here, we use a hybrid photonic-plasmonic nanosensor to detect a small target molecule (pyridine). The sensor's design is based on a dielectric photonic microstructure acting as an antenna, which efficiently funnels light toward a plasmonic transducer and enhances the detection efficiency. This sensor exhibits a limit of detection as small as 10 mol L. Using a calibration procedure based on electrodynamical numerical simulations, we compute the number of detected molecules. This yields a limit of detection in mass of 4 zeptograms (1 zg = 10 g), a record value for plasmonic molecular sensors. Our system can hence be seen as an optical molecular weighing scale, enabling room temperature detection of mass at the zeptogram scale.
得益于其较小的感应体积,基于局域表面等离子体共振(LSPR)的纳米传感器可检测到微量的分析物,甚至可达到单分子极限。然而,被检测的分析物通常是大分子,如蛋白质。小分子的检测在很大程度上仍未得到探索。在这里,我们使用一种混合光子等离子体纳米传感器来检测一种小分子靶标(吡啶)。传感器的设计基于作为天线的介电光子微结构,可有效地将光引导到等离子体换能器,并提高检测效率。该传感器的检测极限小至 10 摩尔每升。通过使用基于电动力学数值模拟的校准程序,我们计算了被检测分子的数量。这使得质量检测极限达到 4 zeptograms(1 zg = 10 g),创下了等离子体分子传感器的记录。因此,我们的系统可以看作是一种光学分子秤,可在室温下以zeptogram 量级检测质量。