Suppr超能文献

预测长期频率稳定性:随机振荡器噪声分析。

Predicting Long-Term Frequency Stability: Stochastic Oscillator Noise Analysis.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Apr;66(4):804-815. doi: 10.1109/TUFFC.2019.2898109. Epub 2019 Feb 7.

Abstract

High-performance frequency standards are affected by power-law noises and characterized by structure functions (i.e., variances). These variances with specified averaging time quantify the frequency stability of the oscillator. To improve the stability estimated from the measured data and extend its maximum averaging time, a method called "StONA" (oscillator noise analysis under stochastic restrictions) is proposed based on convex optimization techniques. StONA also measures the intensity coefficients of noise processes as a by-product of extending averaging time. To test the method against real data, we recompute the distribution regions of total and Hadamard variances estimated from 14 days of satellite clock data and predict the stability of extended averaging time. The recomputed and predicted variances are inconsistent with the ones estimated from 168 days of data and have smaller uncertainty than those estimated from 84 days of time deviations.

摘要

高性能频率标准受到幂律噪声的影响,并具有结构函数(即方差)的特征。这些具有指定平均时间的方差量化了振荡器的频率稳定性。为了提高从测量数据中估计的稳定性并延长其最大平均时间,提出了一种称为“StONA”(随机限制下的振荡器噪声分析)的方法,该方法基于凸优化技术。StONA 还作为延长平均时间的副产品来测量噪声过程的强度系数。为了针对实际数据测试该方法,我们重新计算了从 14 天卫星时钟数据中估计的总方差和 Hadamard 方差的分布区域,并预测了扩展平均时间的稳定性。重新计算和预测的方差与从 168 天数据中估计的方差不一致,并且其不确定性小于从 84 天时间偏差中估计的方差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验