Suppr超能文献

Aesthetics-Guided Graph Clustering With Absent Modalities Imputation.

作者信息

Zhang Luming, Yao Yiyang, Lu Zhenguang, Shao Ling

出版信息

IEEE Trans Image Process. 2019 Jul;28(7):3462-3476. doi: 10.1109/TIP.2019.2897940. Epub 2019 Feb 6.

Abstract

Accurately clustering Internet-scale Internet users into multiple communities according to their aesthetic styles is a useful technique in image modeling and data mining. In this paper, we present a novel partially supervised model which seeks a sparse representation to capture photo aesthetics. It optimally fuzes multi-channel features, i.e., human gaze behavior, quality scores, and semantic tags, each of which could be absent. Afterward, by leveraging the KL-divergence to distinguish the aesthetic distributions between photo sets, a large-scale graph is constructed to describe the aesthetic correlations between users. Finally, a dense subgraph mining algorithm which intrinsically supports outliers (i.e., unique users not belong to any community) is adopted to detect aesthetic communities. The comprehensive experimental results on a million-scale image set grabbed from Flickr have demonstrated the superiority of our method. As a byproduct, the discovered aesthetic communities can enhance photo retargeting and video summarization substantially.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验