IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1471-1482. doi: 10.1109/TCBB.2019.2897683. Epub 2019 Feb 5.
The understanding of subcellular localization (SCL) of proteins and proteome variation in the different tissues and organs of the human body are two crucial aspects for increasing our knowledge of the dynamic rules of proteins, the cell biology, and the mechanism of diseases. Although there have been tremendous contributions to these two fields independently, the lack of knowledge of the variation of spatial distribution of proteins in the different tissues still exists. Here, we proposed an approach that allows predicting protein SCL on tissue specificity through the use of tissue-specific functional associations and physical protein-protein interactions (PPIs). We applied our previously developed Bayesian collective Markov random fields (BCMRFs) on tissue-specific protein-protein interaction network (PPI network) for nine types of tissues focusing on eight high-level SCL. The evaluated results demonstrate the strength of our approach in predicting tissue-specific SCL. We identified 1,314 proteins that their SCL were previously proven cell line dependent. We predicted 549 novel tissue-specific localized candidate proteins while some of them were validated via text-mining.
蛋白质的亚细胞定位(SCL)和人不同组织和器官中蛋白质组的变化理解,是增加我们对蛋白质动态规律、细胞生物学和疾病机制的了解的两个关键方面。尽管这两个领域都取得了巨大的贡献,但对于不同组织中蛋白质空间分布变化的了解仍然存在不足。在这里,我们提出了一种通过使用组织特异性功能关联和物理蛋白质-蛋白质相互作用(PPIs)来预测蛋白质 SCL 的方法。我们将之前开发的贝叶斯集体马尔可夫随机场(BCMRFs)应用于 9 种组织的组织特异性蛋白质-蛋白质相互作用网络(PPI 网络)上,重点关注 8 种高级 SCL。评估结果表明了我们的方法在预测组织特异性 SCL 方面的优势。我们鉴定了 1314 种先前证明与细胞系相关的 SCL 蛋白。我们预测了 549 种新的组织特异性定位候选蛋白,其中一些通过文本挖掘得到了验证。