IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1822-1831. doi: 10.1109/TCBB.2019.2898189. Epub 2019 Feb 7.
In a network, a k-plex represents a subset of n vertices where the degree of each vertex in the subnetwork induced by this subset is at least n-k. The maximum edge-weight k-plex partitioning problem is to find the k-plex partitioning in edge-weighted network, such that the sum of edge weights is maximal. The Max-EkPP has an important role in discovering new information in large biological networks. We propose a variable neighborhood search (VNS) algorithm for solving Max-EkPP. The VNS implements a local search based on the 1-swap first improvement strategy and the objective function that takes into account the degree of every vertex in each partition. The objective function favors feasible solutions and enables a gradual increase of the function's value, when moving from slightly infeasible to barely feasible solutions. Experimental computation is performed on real metabolic networks and other benchmark instances from the literature. Comparing to the previously proposed integer linear programming (ILP), VNS succeeds to find all known optimal solutions. For all other instances, the VNS either reaches previous best known solution or improves it. The proposed VNS is also tested on a large-scale dataset not considered up to now.
在网络中,k-团是指 n 个顶点的子集,其中该子集中每个顶点的子图的度数至少为 n-k。最大边权 k-团划分问题是在加权网络中找到 k-团划分,使得边权之和最大。Max-EkPP 在发现大型生物网络中的新信息方面起着重要作用。我们提出了一种用于解决 Max-EkPP 的变邻域搜索(VNS)算法。VNS 基于 1-交换第一改进策略和考虑每个分区中每个顶点的度数的目标函数执行局部搜索。目标函数有利于可行解,并在从稍微不可行到几乎可行的解时,逐步增加函数的值。在真实代谢网络和文献中的其他基准实例上进行了实验计算。与之前提出的整数线性规划(ILP)相比,VNS 成功找到了所有已知的最优解。对于所有其他实例,VNS 要么达到了之前的最佳已知解,要么改进了它。所提出的 VNS 还在迄今为止尚未考虑的大规模数据集上进行了测试。