Suppr超能文献

具有活性晶格氧的固体碱BiOBr(OH)用于将伯醇高效光氧化为醛

Solid Base Bi O Br (OH) with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes.

作者信息

Dai Yitao, Ren Pengju, Li Yaru, Lv Dongdong, Shen Yanbin, Li Yongwang, Niemantsverdriet Hans, Besenbacher Flemming, Xiang Hongwei, Hao Weichang, Lock Nina, Wen Xiaodong, Lewis James P, Su Ren

机构信息

SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou District, Beijing, 101407, China.

Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.

出版信息

Angew Chem Int Ed Engl. 2019 May 6;58(19):6265-6270. doi: 10.1002/anie.201900773. Epub 2019 Feb 27.

Abstract

The selective oxidation of primary alcohols to aldehydes by O instead of stoichiometric oxidants (for example, Mn , Cr , and Os ) is an important but challenging process. Most heterogeneous catalytic systems (thermal and photocatalysis) require noble metals or harsh reaction conditions. Here we show that the Bi O Br (OH) photocatalyst is very efficient in the selective oxidation of a series of aliphatic (carbon chain from C to C ) and aromatic alcohols to their corresponding aldehydes/ketones under visible-light irradiation in air at room temperature, which would be challenging for conventional thermal and light-driven processes. High quantum efficiencies (71 % and 55 % under 410 and 450 nm irradiation) are reached in a representative reaction, the oxidation of isopropanol. We propose that the outstanding performance of the Bi O Br (OH) photocatalyst is associated with basic surface sites and active lattice oxygen that boost the dehydrogenation step in the photo-oxidation of alcohols.

摘要

用氧气而非化学计量的氧化剂(例如锰、铬和锇)将伯醇选择性氧化为醛是一个重要但具有挑战性的过程。大多数多相催化体系(热催化和光催化)需要贵金属或苛刻的反应条件。在此我们表明,BiOBr(OH)光催化剂在室温下于空气中可见光照射下,能非常有效地将一系列脂肪族(碳链从C1到C6)和芳香族醇选择性氧化为其相应的醛/酮,这对于传统的热驱动和光驱动过程而言具有挑战性。在一个典型反应——异丙醇的氧化反应中,实现了高量子效率(在410和450 nm照射下分别为71%和55%)。我们提出,BiOBr(OH)光催化剂的优异性能与碱性表面位点和活性晶格氧有关,它们促进了醇光氧化过程中的脱氢步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验