Sleep Unit, Department of Respiratory Medicine, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain.
Section of Respiratory Medicine, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.
J Sleep Res. 2019 Oct;28(5):e12830. doi: 10.1111/jsr.12830. Epub 2019 Feb 11.
Central obesity is the main risk factor for obstructive sleep apnea (OSA). Whether there exists a central-obesity anthropometric that better explains apnea-hypopnea index (AHI) variability in the general population and in sleep cohorts is unknown, and this is even less explored among increasing grades of obesity. The objective of the study is to investigate whether there is an anthropometric that better explains AHI variability in a sample of morbidly obese women awaiting bariatric surgery (BS). A prospective multicentre cross-sectional study was conducted in consecutive women before BS. Demographic and anthropometric characteristics included age, body mass index (BMI), neck circumference (NC), waist circumference (WC), hip circumference (HC) and waist-to-hip ratio (WHR). OSA was diagnosed by polysomnography. The capacity of anthropometrics to explain AHI variance was investigated using regression linear models. A total of 115 women were evaluated: age, 44 ± 10 years; BMI, 46 ± 5 kg/m ; AHI, 35 ± 26 events/hr. AHI was associated with all anthropometrics except weight, height and HC. The best univariate predictor was WHR, which accounted for 15% of AHI variance. The simplest model (age + BMI) accounted for 9%, which increased to 20% when applying more complex measurements (age + BMI + NC + WC + HC). The explanatory capacity did not change significantly when applying a simpler model (age + WHR + NC, 19%). In this female morbidly obese cohort, anthropometrics explained one-fifth of AHI variability. WHR is the best univariate parameter and models including waist and neck data provide more information than BMI when explaining AHI variability. Thus, even in young women with extreme obesity, OSA seems to be linked to a specific central-obesity phenotype rather than to a whole-obesity pattern.
中心性肥胖是阻塞性睡眠呼吸暂停(OSA)的主要危险因素。在普通人群和睡眠队列中,是否存在一种中心性肥胖的人体测量指标可以更好地解释呼吸暂停低通气指数(AHI)的变异性尚不清楚,而在肥胖程度不断增加的人群中,这方面的研究则更少。本研究的目的是探讨在接受减重手术(BS)的病态肥胖女性样本中,是否存在一种人体测量指标可以更好地解释 AHI 的变异性。这是一项前瞻性多中心横断面研究,连续纳入了 BS 前的女性患者。人口统计学和人体测量学特征包括年龄、体重指数(BMI)、颈围(NC)、腰围(WC)、臀围(HC)和腰臀比(WHR)。OSA 通过多导睡眠图诊断。使用回归线性模型探讨人体测量指标解释 AHI 方差的能力。共评估了 115 名女性:年龄 44±10 岁;BMI 46±5kg/m;AHI 35±26 次/小时。AHI 与所有人体测量学指标相关,除了体重、身高和 HC。最佳的单变量预测因子是 WHR,它可以解释 AHI 变异性的 15%。最简单的模型(年龄+BMI)占 9%,当应用更复杂的测量方法(年龄+BMI+NC+WC+HC)时,增加到 20%。当应用更简单的模型(年龄+WHR+NC,19%)时,解释能力没有显著变化。在这个女性病态肥胖队列中,人体测量学指标可以解释 AHI 变异性的五分之一。WHR 是最好的单变量参数,当解释 AHI 变异性时,包含腰围和颈围数据的模型比 BMI 提供更多信息。因此,即使在肥胖程度极高的年轻女性中,OSA 似乎与特定的中心性肥胖表型相关,而不是与整体肥胖模式相关。