Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan.
Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 May 5;214:14-20. doi: 10.1016/j.saa.2019.01.086. Epub 2019 Jan 29.
Traditional melt-quenching technique is adopted for synthesis of SmO doped lithium barium gadolinium silicate (LBGS: LiO-BaO-GdO-SiO) glasses. These glass samples are characterized by different spectroscopic techniques under ambient conditions. Density and molar volume of the present LBGS glass samples increase with increasing Sm ion-concentration. JO intensity parameters Ω (where λ = 2, 4 and 6) are evaluated by using Judd-Ofelt theory and Ω > Ω > Ω trend is observed. Furthermore, these parameters are used to evaluate radiative properties like radiative transition probability, branching ratio, radiative lifetime and stimulated emission cross-section for state G of Sm ion. The measured color coordinates for the title glass fall within orange region of CIE diagram. For the present LBGS glasses, the correlated color temperature values are less than warm. The lifetime for the G decreases from 2.468 to 0.566 ms when concentration increases from 0.1 to 2.0 mol% of Sm ions. The analysis of non-exponential behavior of the decay profile through Inokuti-Hirayama model for S = 6 indicates that the energy transfer between Sm ions is due to dipole-dipole interactions. Further energy transfer parameters (Q), critical distance (R, Å) and donor-acceptor interaction parameters (C x 10 cm/s) of Sm ions doped LBGS glasses were evaluated and compared to other glasses. From the evaluated results it is suggested that the present novelty of the work emphasizes on new matrix LBGS doped with Sm ions showing increasing energy transfer rate with increasing in concentration of SmO content indicating these glasses are potential candidate for orange-light emitting device applications.
采用传统的熔融淬火技术合成了 SmO 掺杂的锂钡钆硅酸盐(LBGS:LiO-BaO-GdO-SiO)玻璃。在环境条件下,通过不同的光谱技术对这些玻璃样品进行了表征。随着 Sm 离子浓度的增加,本研究 LBGS 玻璃样品的密度和摩尔体积均增加。通过 Judd-Ofelt 理论评估 JO 强度参数 Ω(其中 λ=2、4 和 6),观察到 Ω>Ω>Ω的趋势。此外,还利用这些参数评估了 Sm 离子基态 G 的辐射性质,如辐射跃迁概率、分支比、辐射寿命和受激发射截面。标题玻璃的实测颜色坐标落在 CIE 图的橙色区域内。对于本研究的 LBGS 玻璃,相关色温值低于暖色。当 Sm 离子浓度从 0.1 增加到 2.0mol%时,G 态的寿命从 2.468 毫秒下降到 0.566 毫秒。通过 Inokuti-Hirayama 模型对衰减曲线的非指数行为进行分析表明,Sm 离子之间的能量转移是由于偶极-偶极相互作用。进一步评估并比较了 Sm 离子掺杂 LBGS 玻璃的能量转移参数(Q)、临界距离(R,Å)和供体-受体相互作用参数(C x 10⁻⁷cm/s)。从评估结果可以看出,本研究的新颖之处在于强调了掺杂 Sm 离子的新型基质 LBGS 玻璃,随着 SmO 含量的增加,能量转移速率增加,表明这些玻璃是潜在的橙色发光器件应用候选材料。