Suppr超能文献

基于高取向石墨纳米薄片的具有砖-壁微观结构的增强热导率和低密度复合材料:用于制造高功率密度电子设备的可制造冷却基板。

Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices.

机构信息

School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People's Republic of China. Weihai Engineering Research Center of Graphite Deep-processing Technology, 2 West Wenhua Road, Weihai 264209, People's Republic of China.

出版信息

Nanotechnology. 2019 Jun 14;30(24):245204. doi: 10.1088/1361-6528/ab0638. Epub 2019 Feb 11.

Abstract

Sustainable and smart thermal management in modern wearable electronics is becoming increasingly important for developing the reliability and preventing premature failure of electronics. In this work, we report on the development of a new type of nanocomposite based on highly oriented graphite nanoplatelets (GNPs) that is functional as a thermal substrate with enhanced thermal conductivity and efficient cooling effect via a manufacturable process. Firstly, GNP/CMC (sodium carboxymethyl cellulose) nanocomposite films (GMFs) were fabricated in mass industry available level by gap coating method, in which GNPs were well preferred due to the driving interface wettability and interaction of CMC, resulting in high in-plane thermal conductivity. Then, GNP/CMC thermal plates (GTPs) with enhanced thermal conductivity (∼29.5 W (m K)) and a low density (1.14 g cm) were produced using as-prepared GMFs and epoxy as fillers and adhesive by lamination and hot pressing method, thus exhibiting an outstanding heat dissipation on electronic cooling. Under a chip power of 1-3 W, the temperature of chip attached on our GTP substrates can be 18.9 ∼ 47.7 °C lower than that on classic polycarbonates (PC) substrate. The obtained boosted thermal conductance of GTPs is primarily attributed to their biomimetic 'brick-wall' microstructure with GMFs and epoxy as brick and cement, which is the same as the structure of shell with mineral and protein as brick and cement, respectively. With enhanced thermal conductivity and manufacturability, our work provides a new promising technical approach in the next generation of thermal management of high power density electronics and wearable electronics.

摘要

现代可穿戴电子设备的可持续和智能热管理对于提高电子产品的可靠性和防止过早失效变得越来越重要。在这项工作中,我们报告了一种新型纳米复合材料的开发,该复合材料基于高度取向的石墨纳米片(GNPs),通过可制造的工艺,作为具有增强热导率和高效冷却效果的热基底是功能化的。首先,通过间隙涂覆法在大规模工业中制造 GNP/CMC(羧甲基纤维素钠)纳米复合膜(GMFs),其中 GNPs 由于CMC 的驱动界面润湿性和相互作用而得到很好的优先取向,从而产生高面内热导率。然后,使用制备好的 GMFs 和环氧树脂作为填充料和胶粘剂,通过层压和热压法制备具有增强热导率(约 29.5 W/(m K))和低密度(1.14 g/cm)的 GNP/CMC 热板(GTP),从而在电子冷却方面表现出出色的散热效果。在芯片功率为 1-3 W 的情况下,贴在我们的 GTP 基板上的芯片的温度可比经典聚碳酸酯(PC)基板低 18.9°C-47.7°C。GTP 获得的增强热导率主要归因于其仿生“砖墙”结构,其中 GMFs 和环氧树脂分别作为砖和水泥,与贝壳的结构相同,其中矿物和蛋白质分别作为砖和水泥。我们的工作具有增强的热导率和可制造性,为下一代高功率密度电子设备和可穿戴电子设备的热管理提供了一种有前途的新技术方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验