Wang Hengwei, Gu Xiang-Kui, Zheng Xusheng, Pan Haibin, Zhu Junfa, Chen Si, Cao Lina, Li Wei-Xue, Lu Junling
Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
Sci Adv. 2019 Jan 18;5(1):eaat6413. doi: 10.1126/sciadv.aat6413. eCollection 2019 Jan.
The prominent size effect of metal nanoparticles shapes decisively nanocatalysis, but entanglement of the corresponding geometric and electronic effects prevents exploiting their distinct functionalities. In this work, we demonstrate that in palladium (Pd)-catalyzed aerobic oxidation of benzyl alcohol, the geometric and electronic effects interplay and compete so intensively that both activity and selectivity showed in volcano trends on the Pd particle size unprecedentedly. By developing a strategy of site-selective blocking via atomic layer deposition along with first principles calculations, we disentangle these two effects and unveil that the geometric effect dominates the right side of the volcano with larger-size Pd particles, whereas the electronic effect directs the left of the volcano with smaller-size Pd particles substantially. Selective blocking of the low-coordination sites prevents formation of the undesired by-product beyond the volcano relationship, achieving a remarkable benzaldehyde selectivity and activity at the same time for 4-nm Pd. Disentangling the geometric and electronic effects of metal nanoparticles opens a new dimension for rational design of catalysts.
金属纳米颗粒的显著尺寸效应决定性地塑造了纳米催化,但相应的几何效应和电子效应相互纠缠,阻碍了对其独特功能的利用。在这项工作中,我们证明,在钯(Pd)催化的苯甲醇需氧氧化反应中,几何效应和电子效应相互作用且竞争激烈,以至于活性和选择性在Pd粒径上均呈现出前所未有的火山型趋势。通过开发一种基于原子层沉积的位点选择性阻断策略并结合第一性原理计算,我们解开了这两种效应,发现几何效应在火山右侧较大尺寸的Pd颗粒中占主导,而电子效应在火山左侧较小尺寸的Pd颗粒中起主要作用。对低配位位点的选择性阻断防止了火山关系之外不需要的副产物的形成,在4纳米Pd颗粒上同时实现了显著的苯甲醛选择性和活性。解开金属纳米颗粒的几何效应和电子效应为催化剂的合理设计开辟了一个新的维度。