Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex System, Fudan University, Shanghai 200438, People's Republic of China.
J Comput Chem. 2019 May 30;40(14):1440-1448. doi: 10.1002/jcc.25798. Epub 2019 Feb 12.
In conventional "Venus Flytrap" mechanism, substrate-binding proteins (SBPs) interconvert between the open and closed conformations. Upon ligand binding, SBPs form a tightly closed conformation with the ligand bound at the interface of two domains. This mechanism was later challenged by many type III SBPs, such as the vitamin B -binding protein BtuF, in which the apo- and holo-state proteins adopt very similar conformations. Here, we combined molecular dynamics simulation and Markov state model analysis to study the conformational dynamics of apo- and B -bound BtuF. The results indicate that the crystal structures represent the only stable conformation of BtuF. Meanwhile, both apo- and holo-BtuF undergo large-scale interdomain motions with little energy cost. B binding casts little restraints on the interdomain motions, suggesting that ligand binding affinity is enhanced by the remaining conformational entropy of holo-BtuF. These results reveal a new paradigm of ligand recognition mechanism of SBPs. © 2019 Wiley Periodicals, Inc.
在传统的“捕蝇草”机制中,基质结合蛋白(SBPs)在开放和闭合构象之间相互转换。配体结合后,SBPs 形成一个紧密的闭合构象,配体结合在两个结构域的界面上。这一机制后来受到许多 III 型 SBP 的挑战,如维生素 B 结合蛋白 BtuF,其中apo 和 holo 状态的蛋白质采取非常相似的构象。在这里,我们结合分子动力学模拟和马科夫状态模型分析来研究 apo 和 B 结合的 BtuF 的构象动力学。结果表明,晶体结构代表了 BtuF 的唯一稳定构象。同时,apo 和 holo-BtuF 都经历了大规模的结构域间运动,几乎没有能量消耗。B 结合对结构域间运动的束缚很小,这表明配体结合亲和力是通过 holo-BtuF 的剩余构象熵增强的。这些结果揭示了 SBP 配体识别机制的一个新范例。