Suppr超能文献

通过超薄尺度下的精细调控生长实现无机纳米晶体的相控

Phase Control in Inorganic Nanocrystals through Finely Tuned Growth at an Ultrathin Scale.

作者信息

Li Haoyi, Wang Xun

机构信息

Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China.

出版信息

Acc Chem Res. 2019 Mar 19;52(3):780-790. doi: 10.1021/acs.accounts.8b00645. Epub 2019 Feb 12.

Abstract

Crystalline polymorphs have been considered a prevailing phenomenon in inorganic nanocrystals and provide approaches to modulate fundamental properties and innovative advanced applications. As a basic demand for phase engineering, accessible and controllable synthetic methodologies are indispensable for acquisition of high-quality products in expected phases. Phase stability is also a non-negligible issue that determines continuous gains of functionality and long-term sustainability of characteristic features. Maintaining structural stability of metastable phases provides challenges and opportunities for investigations on fascinating properties and intriguing applications of inorganic nanocrystals. Phase engineering is of great significance to acquire metallic (1T) and semiconducting (2H) Mo- and W-based dichalcogenides for hydrogen evolution reaction (HER) and CO reduction reaction (CORR), respectively. The catalysts in 1T phase have superior electron transfer kinetics and abundant active sites on both basal planes and edges for HER, while ones in 2H phase are preferentially deployed for CORR to utilize edge sites for catalysis and restrain competitive HER activity. In addition, the photocatalytic performance for HER has been enhanced by combining anatase and rutile phases because electron transfer between the two phases during photocatalysis facilitates the separation of charge carriers and thus impedes the recombination of electron-hole pairs. Although ample effort has been devoted to developing phase engineering, principle understanding at an ultrathin scale remains obscure. In this Account, we provide comprehensive insight into work from our group regarding controllable synthesis of inorganic nanocrystals with phase engineering, critical effects on phase stability, and noteworthy studies on phase-related properties and applications. For bulk materials, phase control and transition have a large energy barrier, so they can only be achieved under rigorous conditions. However, at the initial stage of synthesis, especially for nucleation, there are a small quantity of chemical bonds that contribute to regulate phase and structure with ease. In our work, we mainly modulate nucleation and growth at an ultrathin scale to demonstrate facile approaches for phase engineering. This unique perspective makes for a distinct guidance of controllable synthesis and deliberate stabilization of inorganic nanomaterials with phase engineering. We have developed a series of synthetic strategies for phase engineering to fabricate inorganic nanocrystals in a specific phase with controlled size and composition and adjustable morphologies and surface features. Four sorts of models (MoS, ZrO, InO, and TiO) are used for demonstrating finely tuned growth at an ultrathin scale. However, phase engineering has been regarded as immature because only one phase in polymorphs is thermodynamically stable generally. Phase stability of metastable nanocrystals has attracted much interest. Our substantial investigations illustrate several crucial factors on phase stability, leading to inspiration for facilitating persistent emergence of characteristics and functionalities. By full use of the features of a specific phase, we spotlight ligand-induced surface interactions on coverage-dependent electronic structures and chemisorption effects at one-unit thickness of TiO(B) nanomaterials with phase engineering. Meanwhile, an energy conversion system for overall water splitting (OWS) drives forward steps in function-oriented synthesis of MoS-based nanomaterials with phase engineering. In the last section, we summarize this theme and highlight several promising directions for future development.

摘要

晶体多晶型现象在无机纳米晶体中被认为是一种普遍现象,它为调节基本性质和创新先进应用提供了途径。作为相工程的基本要求,可获取且可控的合成方法对于获得预期相的高质量产物而言不可或缺。相稳定性也是一个不可忽视的问题,它决定了功能的持续提升以及特征的长期稳定性。维持亚稳相的结构稳定性为研究无机纳米晶体的迷人性质和有趣应用带来了挑战与机遇。相工程对于分别获得用于析氢反应(HER)的金属(1T)相和用于CO还原反应(CORR)的半导体(2H)相的钼基和钨基二硫化物具有重要意义。1T相的催化剂具有优异的电子转移动力学,并且在基面和边缘都有丰富的活性位点用于HER,而2H相的催化剂则优先用于CORR,以利用边缘位点进行催化并抑制竞争性HER活性。此外,通过结合锐钛矿相和金红石相,HER的光催化性能得到了增强,因为光催化过程中两相之间的电子转移促进了电荷载流子的分离,从而阻碍了电子 - 空穴对的复合。尽管已经投入了大量努力来开发相工程,但在超薄尺度上的原理理解仍然模糊不清。在本综述中,我们全面深入地介绍了我们团队在无机纳米晶体的相工程可控合成、对相稳定性的关键影响以及与相相关的性质和应用的重要研究方面的工作。对于块状材料,相控制和转变具有很大的能垒,因此只能在严格条件下实现。然而,在合成的初始阶段,特别是对于成核过程,有少量化学键有助于轻松调节相和结构。在我们的工作中,我们主要在超薄尺度上调节成核和生长,以展示相工程的简便方法。这种独特的视角为无机纳米材料的相工程可控合成和有意稳定提供了独特的指导。我们已经开发了一系列相工程的合成策略,以制备具有特定相、可控尺寸和组成、可调节形态和表面特征的无机纳米晶体。使用四种模型(MoS、ZrO、InO和TiO)来展示超薄尺度上的精细调控生长。然而,由于多晶型物中通常只有一个相是热力学稳定的,相工程一直被认为不够成熟。亚稳纳米晶体的相稳定性引起了广泛关注。我们的大量研究阐明了几个影响相稳定性的关键因素,为促进特性和功能的持续出现带来了启示。通过充分利用特定相的特征,我们利用相工程突出了配体诱导的表面相互作用对TiO(B)纳米材料单单元厚度下覆盖度依赖的电子结构和化学吸附效应的影响。同时,一个用于整体水分解(OWS)的能量转换系统推动了基于相工程的MoS基纳米材料功能导向合成的进展。在最后一部分,我们总结了这个主题,并强调了未来发展的几个有前景的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验