Ferguson M W
Department of Cell & Structural Biology, University of Manchester, UK.
Development. 1988;103 Suppl:41-60. doi: 10.1242/dev.103.Supplement.41.
In all vertebrates, the secondary palate arises as bilateral outgrowths from the maxillary processes. In birds and most reptiles, these palatal shelves grow initially horizontally, but do not fuse with each other resulting in physiological cleft palate. In crocodilians, shelf fusion occurs resulting in an intact secondary palate. Mammalian palatal shelves initially grow vertically down the side of the tongue, but elevate at a precise time to a horizontal position above the dorsum of the tongue and fuse with each other to form an intact palate. Palatal shelf-elevation is the result of an intrinsic shelf elevating force, chiefly generated by the progressive accumulation and hydration of hyaluronic acid. In all vertebrates the nasal epithelium differentiates into pseudostratified ciliated columnar cells and the oral epithelia differentiates into stratified squamous cells, but the medial edge epithelial (MEE) phenotype differs in different groups. In mammals, the MEE of opposing shelves adhere to each other to form an epithelial seam which then disrupts by cell death and cell migration into the mesenchyme accompanied by an epitheliomesenchymal transformation. In birds, the MEE keratinize resulting in cleft palate whereas, in alligators, the MEE migrate onto the nasal aspect of the palate. In all vertebrates, this regional, temporal and species-specific epithelial differentiation is specified by the underlying mesenchyme. Signalling of this interaction is complex but involves both extracellular matrix and soluble factors e.g. minor collagen types, tenascin, EGF, TGF alpha, TGF beta, PDGF, FGF. These soluble growth factors have a biphasic effect: directly on the epithelia and on the mesenchyme where they stimulate or inhibit cell division and synthesis of specific extracellular matrix molecules. The extracellular matrix molecules (and bound growth factors) synthesized by the mesenchymal cells may then directly affect the epithelium. These signals cause differential gene expression via second messenger systems e.g. cAMP, cGMP, Ca2+, pH, pI etc. Molecular markers for nasal, medial and oral epithelial cell differentiation include the types of cytokeratin intermediate filaments and specific cell surface molecules recognized by monoclonal antibodies: the genes for such molecules are probably expressed in response to mesenchymal signals. Using such an approach, it is possible to go from a morphological description of palate development to a cellular analysis of the mechanisms involved and then to identification of candidate genes that may be important for screening and diagnosis of cleft palate.
在所有脊椎动物中,次生腭由上颌突的双侧向外生长发育而来。在鸟类和大多数爬行动物中,这些腭突最初水平生长,但不会相互融合,从而导致生理性腭裂。在鳄鱼中,腭突会融合,形成完整的次生腭。哺乳动物的腭突最初沿舌侧垂直向下生长,但会在特定时间升高至舌背上方的水平位置,并相互融合形成完整的腭。腭突抬高是由一种内在的抬高力导致的,这种力主要由透明质酸的逐渐积累和水化产生。在所有脊椎动物中,鼻上皮分化为假复层纤毛柱状细胞,口腔上皮分化为复层鳞状细胞,但不同类群中内侧边缘上皮(MEE)的表型有所不同。在哺乳动物中,相对腭突的MEE相互黏附形成上皮缝,随后上皮缝通过细胞死亡和细胞迁移到间充质中而被破坏,同时伴随着上皮-间充质转化。在鸟类中,MEE角化导致腭裂,而在短吻鳄中,MEE迁移到腭的鼻侧。在所有脊椎动物中,这种区域、时间和物种特异性的上皮分化由其下方的间充质决定。这种相互作用的信号传导很复杂,但涉及细胞外基质和可溶性因子,如小胶原类型、腱生蛋白、表皮生长因子(EGF)、转化生长因子α(TGFα)、转化生长因子β(TGFβ)、血小板衍生生长因子(PDGF)、成纤维细胞生长因子(FGF)。这些可溶性生长因子具有双相作用:直接作用于上皮细胞,以及作用于间充质,在间充质中它们刺激或抑制细胞分裂以及特定细胞外基质分子的合成。间充质细胞合成的细胞外基质分子(以及结合的生长因子)随后可能直接影响上皮细胞。这些信号通过第二信使系统,如环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)、钙离子(Ca2+)、酸碱度(pH)、离子强度(pI)等,导致基因表达差异。鼻、内侧和口腔上皮细胞分化的分子标志物包括细胞角蛋白中间丝的类型以及单克隆抗体识别的特定细胞表面分子:这些分子的基因可能响应间充质信号而表达。采用这种方法,有可能从腭发育的形态学描述深入到对相关机制的细胞分析,进而鉴定出可能对腭裂筛查和诊断很重要的候选基因。