Suppr超能文献

使用计算方法鉴定卵巢癌的分子生物标志物。

Identification of molecular biomarkers for ovarian cancer using computational approaches.

机构信息

Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.

出版信息

Carcinogenesis. 2019 Jul 6;40(6):742-748. doi: 10.1093/carcin/bgz025.

Abstract

Ovarian cancer is one of the major causes of mortality among women. This is partly because of highly asymptomatic nature, lack of reliable screening techniques and non-availability of effective biomarkers of ovarian cancer. The recent availability of high-throughput data and consequently the development of network medicine approach may play a key role in deciphering the underlying global mechanism involved in a complex disease. This novel approach in medicine will pave the way in translating the new molecular insights into an effective drug therapy applying better diagnostic, prognostic and predictive tests for a complex disease. In this study, we performed reconstruction of gene co-expression networks with a query-based method in healthy and different stages of ovarian cancer to identify new potential biomarkers from the reported biomarker genes. We proposed 17 genes as new potential biomarkers for ovarian cancer that can effectively classify a disease sample from a healthy sample. Most of the predicted genes are found to be differentially expressed between healthy and diseased states. Moreover, the survival analysis showed that these genes have a significantly higher effect on the overall survival rate of the patient than the established biomarkers. The comparative analyses of the co-expression networks across healthy and different stages of ovarian cancer have provided valuable insights into the dynamic nature of ovarian cancer.

摘要

卵巢癌是导致女性死亡的主要原因之一。部分原因是因为其具有高度无症状的特点,缺乏可靠的筛查技术,并且没有有效的卵巢癌生物标志物。最近高通量数据的出现以及网络医学方法的发展可能在揭示涉及复杂疾病的潜在全局机制方面发挥关键作用。这种医学新方法将为将新的分子见解转化为有效的药物治疗铺平道路,为复杂疾病应用更好的诊断、预后和预测测试。在这项研究中,我们使用基于查询的方法对健康和不同阶段的卵巢癌进行了基因共表达网络的重建,以从报告的生物标志物基因中识别新的潜在生物标志物。我们提出了 17 个基因作为卵巢癌的新的潜在生物标志物,可有效将疾病样本与健康样本进行分类。预测的大多数基因在健康和患病状态之间存在差异表达。此外,生存分析表明,与已建立的生物标志物相比,这些基因对患者的总生存率有更高的影响。健康和不同阶段卵巢癌的共表达网络的比较分析为卵巢癌的动态性质提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验