Suppr超能文献

锌转运蛋白 10(ZnT10)依赖性细胞内锰的外排是由活性钙耦交换驱动的。

Zinc transporter 10 (ZnT10)-dependent extrusion of cellular Mn is driven by an active Ca-coupled exchange.

机构信息

From the Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel.

Department of Life Sciences and The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel.

出版信息

J Biol Chem. 2019 Apr 12;294(15):5879-5889. doi: 10.1074/jbc.RA118.006816. Epub 2019 Feb 12.

Abstract

Manganese (Mn) is extruded from the cell by the zinc transporter 10 (ZnT10). Loss of ZnT10 expression caused by autosomal mutations in the gene leads to hypermanganesemia in multiple organs. Here, combining fluorescent monitoring of cation influx in HEK293-T cells expressing human ZnT10 with molecular modeling of ZnT10 cation selectivity, we show that ZnT10 is exploiting the transmembrane Ca inward gradient for active cellular exchange of Mn In analyzing ZnT10 activity we used the ability of Fura-2 to spectrally distinguish between Mn and Ca fluxes. We found that () application of Mn-containing Ca-free solution to ZnT10-expressing cells triggers an influx of Mn, () reintroduction of Ca leads to cellular Mn extrusion against an inward Mn gradient, and () the cellular transport of Mn by ZnT10 is coupled to a reciprocal movement of Ca Remarkably, replacing a single asparagine residue in ZnT10 (Asp-43) with threonine (ZnT10 N43T) converted the Mn/Ca exchange to an uncoupled channel mode, permeable to both Ca and Mn The findings in our study identify the first ion transporter that uses the Ca gradient for active counter-ion exchange. They highlight a remarkable versatility in metal selectivity and mode of transport controlled by the tetrahedral metal transport site of ZnT proteins.

摘要

锰(Mn)通过锌转运蛋白 10(ZnT10)从细胞中挤出。由于 基因的常染色体突变导致 ZnT10 表达缺失,导致多个器官的高锰血症。在这里,我们将表达人 ZnT10 的 HEK293-T 细胞中阳离子内流的荧光监测与 ZnT10 阳离子选择性的分子建模相结合,表明 ZnT10 正在利用跨膜 Ca 内流梯度进行 Mn 的主动细胞交换。在分析 ZnT10 活性时,我们利用 Fura-2 能够在光谱上区分 Mn 和 Ca 通量的能力。我们发现 () 将含有 Mn 的无 Ca 溶液应用于表达 ZnT10 的细胞会触发 Mn 的内流,() 重新引入 Ca 会导致细胞内 Mn 逆 Mn 内流梯度排出,() ZnT10 通过 Mn 的细胞转运与 Ca 的反向运动偶联。值得注意的是,将 ZnT10 中的单个天冬酰胺残基(Asp-43)替换为苏氨酸(ZnT10 N43T)将 Mn/Ca 交换转换为不偶联的通道模式,对 Ca 和 Mn 均具有通透性。我们的研究结果确定了第一个利用 Ca 梯度进行主动反离子交换的离子转运蛋白。它们突出了 ZnT 蛋白的四面体金属转运位点控制的金属选择性和运输模式的显著多功能性。

相似文献

10
Manganese transport and toxicity in polarized WIF-B hepatocytes.锰在极化的 WIF-B 肝细胞中的运输和毒性。
Am J Physiol Gastrointest Liver Physiol. 2018 Sep 1;315(3):G351-G363. doi: 10.1152/ajpgi.00103.2018. Epub 2018 May 24.

引用本文的文献

3
Zinc and its binding proteins: essential roles and therapeutic potential.锌及其结合蛋白:重要作用与治疗潜力
Arch Toxicol. 2025 Jan;99(1):23-41. doi: 10.1007/s00204-024-03891-3. Epub 2024 Nov 7.
4
Trace Elements in Medicinal Metallomics.药物金属组学中的微量元素
Mini Rev Med Chem. 2025;25(9):664-674. doi: 10.2174/0113895575333766240912162252.
9
Vitamin D: A Critical Regulator of Intestinal Physiology.维生素D:肠道生理的关键调节因子。
JBMR Plus. 2021 Oct 6;5(12):e10554. doi: 10.1002/jbm4.10554. eCollection 2021 Dec.
10
Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective.排泄在锰稳态和神经毒性中的作用:历史视角。
Am J Physiol Gastrointest Liver Physiol. 2022 Jan 1;322(1):G79-G92. doi: 10.1152/ajpgi.00299.2021. Epub 2021 Nov 17.

本文引用的文献

3
Redox dynamics of manganese as a mitochondrial life-death switch.锰的氧化还原动力学作为线粒体生死开关
Biochem Biophys Res Commun. 2017 Jan 15;482(3):388-398. doi: 10.1016/j.bbrc.2016.10.126. Epub 2017 Feb 3.
8
SLC30A10: A novel manganese transporter.溶质载体家族30成员10:一种新型锰转运体。
Worm. 2015 May 11;4(3):e1042648. doi: 10.1080/21624054.2015.1042648. eCollection 2015 Jul-Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验