From the Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel.
Department of Life Sciences and The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501 Israel.
J Biol Chem. 2019 Apr 12;294(15):5879-5889. doi: 10.1074/jbc.RA118.006816. Epub 2019 Feb 12.
Manganese (Mn) is extruded from the cell by the zinc transporter 10 (ZnT10). Loss of ZnT10 expression caused by autosomal mutations in the gene leads to hypermanganesemia in multiple organs. Here, combining fluorescent monitoring of cation influx in HEK293-T cells expressing human ZnT10 with molecular modeling of ZnT10 cation selectivity, we show that ZnT10 is exploiting the transmembrane Ca inward gradient for active cellular exchange of Mn In analyzing ZnT10 activity we used the ability of Fura-2 to spectrally distinguish between Mn and Ca fluxes. We found that () application of Mn-containing Ca-free solution to ZnT10-expressing cells triggers an influx of Mn, () reintroduction of Ca leads to cellular Mn extrusion against an inward Mn gradient, and () the cellular transport of Mn by ZnT10 is coupled to a reciprocal movement of Ca Remarkably, replacing a single asparagine residue in ZnT10 (Asp-43) with threonine (ZnT10 N43T) converted the Mn/Ca exchange to an uncoupled channel mode, permeable to both Ca and Mn The findings in our study identify the first ion transporter that uses the Ca gradient for active counter-ion exchange. They highlight a remarkable versatility in metal selectivity and mode of transport controlled by the tetrahedral metal transport site of ZnT proteins.
锰(Mn)通过锌转运蛋白 10(ZnT10)从细胞中挤出。由于 基因的常染色体突变导致 ZnT10 表达缺失,导致多个器官的高锰血症。在这里,我们将表达人 ZnT10 的 HEK293-T 细胞中阳离子内流的荧光监测与 ZnT10 阳离子选择性的分子建模相结合,表明 ZnT10 正在利用跨膜 Ca 内流梯度进行 Mn 的主动细胞交换。在分析 ZnT10 活性时,我们利用 Fura-2 能够在光谱上区分 Mn 和 Ca 通量的能力。我们发现 () 将含有 Mn 的无 Ca 溶液应用于表达 ZnT10 的细胞会触发 Mn 的内流,() 重新引入 Ca 会导致细胞内 Mn 逆 Mn 内流梯度排出,() ZnT10 通过 Mn 的细胞转运与 Ca 的反向运动偶联。值得注意的是,将 ZnT10 中的单个天冬酰胺残基(Asp-43)替换为苏氨酸(ZnT10 N43T)将 Mn/Ca 交换转换为不偶联的通道模式,对 Ca 和 Mn 均具有通透性。我们的研究结果确定了第一个利用 Ca 梯度进行主动反离子交换的离子转运蛋白。它们突出了 ZnT 蛋白的四面体金属转运位点控制的金属选择性和运输模式的显著多功能性。