Suppr超能文献

在异质研究人群中,使用包含和不包含交互项的协方差分析模型分析前后设计。

Analyzing pre-post designs using the analysis of covariance models with and without the interaction term in a heterogeneous study population.

机构信息

Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Stat Methods Med Res. 2020 Jan;29(1):189-204. doi: 10.1177/0962280219827971. Epub 2019 Feb 13.

Abstract

Pre-post parallel group randomized designs have been frequently used to compare the effectiveness of competing treatment strategies and the ordinary least squares (OLS)-based analysis of covariance model (ANCOVA) is a routine analytic approach. In many scenarios, the associations between the baseline and the post-randomization scores could differ between the treatment and control arms, which justifies the inclusion of the treatment by baseline score interaction in ANCOVA. This heterogeneity may also cause heteroscedastic errors in ANCOVA. In this study, we compared the performances of the ANCOVA models with and without the interaction term in estimating the marginal treatment effect in a heterogeneous two-arm pre-post design. We explored the relationship between the two nested ANCOVA models from the perspective of an omitted variable bias problem and further revealed the reasons why the usual ANCOVA may fail in heterogeneous scenario through the discussion of the three types of variances associated with the ANCOVA estimators of the marginal treatment effect: the target unconditional variance, the conditional variance allowing unequal error variances, and the OLS conditional variance derived under the assumption of constant error variance. We demonstrated analytically and with simulations that the proposed heteroscadastic-consistent variance estimators provide valid unconditional inference for ANCOVA, and the ANCOVA interaction model is more powerful than the ANCOVA main effect model when a design is unbalanced.

摘要

前后平行组随机设计已被广泛用于比较竞争治疗策略的效果,基于普通最小二乘法(OLS)的协方差分析模型(ANCOVA)是一种常规的分析方法。在许多情况下,治疗组和对照组之间的基线和随机后评分之间的关联可能不同,这证明了在 ANCOVA 中包含治疗与基线评分的交互作用是合理的。这种异质性也可能导致 ANCOVA 中的异方差错误。在这项研究中,我们比较了具有和不具有交互项的 ANCOVA 模型在估计异质两臂前后设计中的边际治疗效果方面的性能。我们从忽略变量偏差问题的角度探讨了两个嵌套的 ANCOVA 模型之间的关系,并通过讨论与边际治疗效果的 ANCOVA 估计值相关的三种方差类型,进一步揭示了通常的 ANCOVA 在异质情况下可能失败的原因:目标无条件方差、允许不等误差方差的条件方差以及在假定误差方差不变的情况下得出的 OLS 条件方差。我们通过分析和模拟证明了所提出的异方差一致方差估计量为 ANCOVA 提供了有效的无条件推断,并且当设计不平衡时,ANCOVA 交互模型比 ANCOVA 主效应模型更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验