Suppr超能文献

双臂随机前后设计,有一个治疗后测量的统计分析。

Statistical analysis of two arm randomized pre-post designs with one post-treatment measurement.

机构信息

Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, Campus Box 8100, 660 S. Euclid Ave, St. Louis, MO, USA.

出版信息

BMC Med Res Methodol. 2021 Jul 24;21(1):150. doi: 10.1186/s12874-021-01323-9.

Abstract

BACKGROUND

Randomized pre-post designs, with outcomes measured at baseline and after treatment, have been commonly used to compare the clinical effectiveness of two competing treatments. There are vast, but often conflicting, amount of information in current literature about the best analytic methods for pre-post designs. It is challenging for applied researchers to make an informed choice.

METHODS

We discuss six methods commonly used in literature: one way analysis of variance ("ANOVA"), analysis of covariance main effect and interaction models on the post-treatment score ("ANCOVAI" and "ANCOVAII"), ANOVA on the change score between the baseline and post-treatment scores ("ANOVA-Change"), repeated measures ("RM") and constrained repeated measures ("cRM") models on the baseline and post-treatment scores as joint outcomes. We review a number of study endpoints in randomized pre-post designs and identify the mean difference in the post-treatment score as the common treatment effect that all six methods target. We delineate the underlying differences and connections between these competing methods in homogeneous and heterogeneous study populations.

RESULTS

ANCOVA and cRM outperform other alternative methods because their treatment effect estimators have the smallest variances. cRM has comparable performance to ANCOVAI in the homogeneous scenario and to ANCOVAII in the heterogeneous scenario. In spite of that, ANCOVA has several advantages over cRM: i) the baseline score is adjusted as covariate because it is not an outcome by definition; ii) it is very convenient to incorporate other baseline variables and easy to handle complex heteroscedasticity patterns in a linear regression framework.

CONCLUSIONS

ANCOVA is a simple and the most efficient approach for analyzing pre-post randomized designs.

摘要

背景

随机分组前后设计,通过基线和治疗后测量结果,常用于比较两种竞争治疗方法的临床效果。目前文献中关于前后设计最佳分析方法的信息非常丰富,但往往相互矛盾,应用研究人员难以做出明智的选择。

方法

我们讨论了文献中常用的六种方法:单因素方差分析(“ANOVA”)、基于治疗后评分的协方差主效应和交互模型分析(“ANCOVAI”和“ANCOVAII”)、基线和治疗后评分之间变化评分的方差分析(“ANOVA-Change”)、基于基线和治疗后评分的重复测量(“RM”)和约束重复测量(“cRM”)模型作为联合结局。我们回顾了随机分组前后设计中的一些研究终点,并确定治疗后评分的平均差异是所有六种方法都针对的常见治疗效果。我们在同质和异质研究人群中阐明了这些竞争方法之间的潜在差异和联系。

结果

协方差分析和约束重复测量比其他替代方法表现更好,因为它们的治疗效果估计值具有最小的方差。在同质情况下,cRM 的性能与 ANCOVAI 相当,在异质情况下与 ANCOVAII 相当。尽管如此,协方差分析相对于 cRM 具有以下几个优势:i)基线评分作为协变量进行调整,因为根据定义,它不是一个结局;ii)在线性回归框架中很方便地纳入其他基线变量,并且容易处理复杂的异方差模式。

结论

协方差分析是分析随机分组前后设计的简单且最有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e83b/8305561/5cca8cb3c71b/12874_2021_1323_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验