Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
Soft Matter. 2019 Mar 13;15(11):2336-2347. doi: 10.1039/c8sm02042f.
Diffusing wave spectroscopy (DWS)-based micro-rheology has been used in different optical geometries (backscattering and transmission) as well as different sample thicknesses in order to probe system dynamics at different length scales [D. J. Pine, D. A. Weitz, J. X. Zhu, E. Herbolzheimer. J. Phys., 1990, 51(18), 2101-2127]. Previous study from this lab [Q. Li, X. Peng, G. B. McKenna. Soft Matter, 2017, 13(7), 1396-1404] indicates the DWS-based micro-rheology observes the system non-equilibrium behaviors differently from macro-rheology. The object of the present work was to further explore the non-equilibrium dynamics and to address the range of utility of DWS as a micro-rheological method. A thermo-sensitive core-shell colloidal system was investigated both during aging and subsequent to aging into a metastable equilibrium state using temperature-jump induced volume fraction-jump experiments. We find that in the non-equilibrium state, significant differences in the measured dynamics are observed for the different geometries and length scales. Compressed exponential relaxations for the autocorrelation function g2(t) were observed for large length scales. However, upon converting the g2(t) data to the mean square displacement (MSD), such differences with length scale diminished and the long-time MSD behavior was consistent with diffusive behavior. These observations in the non-equilibrium behaviors for different length scales leads to questioning of some interpretations in the current field of light scattering-based micro-rheology and provides a possibility to interrogate the aging mechanisms in colloidal glasses from a broader perspective than normally considered in measurements of g2(t) using DWS-based micro-rheology.
基于扩散波光谱(DWS)的微流变学已在不同的光学几何形状(背散射和透射)以及不同的样品厚度下使用,以便在不同的长度尺度上探测系统动力学[D. J. Pine,D. A. Weitz,J. X. Zhu,E. Herbolzheimer。J. Phys.,1990,51(18),2101-2127]。本实验室之前的研究[Q. Li,X. Peng,G. B. McKenna。Soft Matter,2017,13(7),1396-1404]表明,基于 DWS 的微流变学观察到的系统非平衡行为与宏观流变学不同。目前这项工作的目的是进一步探索非平衡动力学,并解决 DWS 作为微流变学方法的应用范围。使用温度跃变诱导的体积分数跃变实验,研究了热敏感核壳胶体体系在老化过程中和随后进入亚稳平衡态过程中的非平衡动力学。我们发现,在非平衡状态下,不同的几何形状和长度尺度会观察到测量动力学的显著差异。对于大长度尺度,自相关函数 g2(t)观察到压缩指数松弛。然而,将 g2(t)数据转换为均方根位移(MSD)后,长度尺度的差异减小,长时间 MSD 行为与扩散行为一致。这些在不同长度尺度下的非平衡行为的观察结果导致对当前基于光散射的微流变学领域中的一些解释产生质疑,并为从比通常在使用基于 DWS 的微流变学测量 g2(t)时考虑的更广泛的角度来研究胶体玻璃中的老化机制提供了可能性。