文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing.

作者信息

Kim Beomseok, Lee Eunmin, Kim Jong Kyoung

机构信息

Department of New Biology, DGIST, Daegu, Republic of Korea.

出版信息

Methods Mol Biol. 2019;1935:25-43. doi: 10.1007/978-1-4939-9057-3_3.


DOI:10.1007/978-1-4939-9057-3_3
PMID:30758818
Abstract

Profiling the transcriptomes of individual cells with single-cell RNA sequencing (scRNA-seq) has been widely applied to provide a detailed molecular characterization of cellular heterogeneity within a population of cells. Despite recent technological advances of scRNA-seq, technical variability of gene expression in scRNA-seq is still much higher than that in bulk RNA-seq. Accounting for technical variability is therefore a prerequisite for correctly analyzing single-cell data. This chapter describes a computational pipeline for detecting highly variable genes exhibiting higher cell-to-cell variability than expected by technical noise. The basic pipeline using the scater and scran R/Bioconductor packages includes deconvolution-based normalization, fitting the mean-variance trend, testing for nonzero biological variability, and visualization with highly variable genes. An outline of the underlying theory of detecting highly variable genes is also presented. We illustrate how the pipeline works by using two case studies, one from mouse embryonic stem cells with external RNA spike-ins, and the other from mouse dentate gyrus cells without spike-ins.

摘要

相似文献

[1]
Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing.

Methods Mol Biol. 2019

[2]
Data Analysis in Single-Cell Transcriptome Sequencing.

Methods Mol Biol. 2018

[3]
Quality Control of Single-Cell RNA-seq.

Methods Mol Biol. 2019

[4]
A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.

PLoS Comput Biol. 2018-4-9

[5]
SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis.

PLoS Comput Biol. 2015-11-24

[6]
Effective detection of variation in single-cell transcriptomes using MATQ-seq.

Nat Methods. 2017-1-16

[7]
Inference of differentiation time for single cell transcriptomes using cell population reference data.

Nat Commun. 2017-11-30

[8]
Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.

Methods Mol Biol. 2020

[9]
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression.

Nat Commun. 2015-10-22

[10]
Detection of high variability in gene expression from single-cell RNA-seq profiling.

BMC Genomics. 2016-8-22

引用本文的文献

[1]
BASiCS workflow: a step-by-step analysis of expression variability using single cell RNA sequencing data.

F1000Res. 2022

[2]
The Sum of Two Halves May Be Different from the Whole-Effects of Splitting Sequencing Samples Across Lanes.

Genes (Basel). 2022-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索