Suppr超能文献

一种用于隐性营养不良型大疱性表皮松解症的单细胞 RNA-seq 分析的多任务聚类方法。

A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.

机构信息

Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America.

Department of Genetics, Cell Biology and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America.

出版信息

PLoS Comput Biol. 2018 Apr 9;14(4):e1006053. doi: 10.1371/journal.pcbi.1006053. eCollection 2018 Apr.

Abstract

Single-cell RNA sequencing (scRNA-seq) has been widely applied to discover new cell types by detecting sub-populations in a heterogeneous group of cells. Since scRNA-seq experiments have lower read coverage/tag counts and introduce more technical biases compared to bulk RNA-seq experiments, the limited number of sampled cells combined with the experimental biases and other dataset specific variations presents a challenge to cross-dataset analysis and discovery of relevant biological variations across multiple cell populations. In this paper, we introduce a method of variance-driven multitask clustering of single-cell RNA-seq data (scVDMC) that utilizes multiple single-cell populations from biological replicates or different samples. scVDMC clusters single cells in multiple scRNA-seq experiments of similar cell types and markers but varying expression patterns such that the scRNA-seq data are better integrated than typical pooled analyses which only increase the sample size. By controlling the variance among the cell clusters within each dataset and across all the datasets, scVDMC detects cell sub-populations in each individual experiment with shared cell-type markers but varying cluster centers among all the experiments. Applied to two real scRNA-seq datasets with several replicates and one large-scale droplet-based dataset on three patient samples, scVDMC more accurately detected cell populations and known cell markers than pooled clustering and other recently proposed scRNA-seq clustering methods. In the case study applied to in-house Recessive Dystrophic Epidermolysis Bullosa (RDEB) scRNA-seq data, scVDMC revealed several new cell types and unknown markers validated by flow cytometry. MATLAB/Octave code available at https://github.com/kuanglab/scVDMC.

摘要

单细胞 RNA 测序 (scRNA-seq) 通过检测异质细胞群中的亚群,已广泛应用于发现新的细胞类型。由于与批量 RNA-seq 实验相比,scRNA-seq 实验的读取覆盖率/标签计数较低,并且引入了更多的技术偏差,因此与有限数量的采样细胞相结合,再加上实验偏差和其他数据集特定的变化,给跨数据集分析和发现多个细胞群体中的相关生物学变化带来了挑战。在本文中,我们介绍了一种基于方差驱动的单细胞 RNA-seq 数据多任务聚类(scVDMC)的方法,该方法利用来自生物重复或不同样本的多个单细胞群体。scVDMC 对多个类似细胞类型和标记但表达模式不同的 scRNA-seq 实验中的单细胞进行聚类,使得 scRNA-seq 数据比典型的汇集分析更好地整合,汇集分析仅增加了样本量。通过控制每个数据集内和所有数据集之间细胞簇之间的方差,scVDMC 可以检测到每个单独实验中具有共享细胞类型标记但在所有实验中簇中心不同的细胞亚群。将 scVDMC 应用于两个具有多个重复的真实 scRNA-seq 数据集和一个关于三个患者样本的大规模基于液滴的数据集,与汇集聚类和其他最近提出的 scRNA-seq 聚类方法相比,scVDMC 更准确地检测到了细胞群体和已知的细胞标记。在应用于内部隐性营养不良性大疱性表皮松解症(RDEB) scRNA-seq 数据的案例研究中,scVDMC 通过流式细胞术验证揭示了几个新的细胞类型和未知标记。MATLAB/Octave 代码可在 https://github.com/kuanglab/scVDMC 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a3/5908193/56551ed378a1/pcbi.1006053.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验